Skip to main content
Log in

SSR-GAN: super resolution-based generative adversarial networks model for flood image enhancement

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Floods, a common natural disaster, it affects more than half of all natural disasters, primarily due to high floods, high tides, heavy rainfall, and human activity. Distinguishing between the flooded and non-flood areas during the disaster is dependent on the quality of images collected from different sources. Since synthetic aperture radar (SAR) images can see through cloud cover and capture photos of the Earth's surface during bad weather, they are excellent for detecting floods. Image Enhancement is the approach that helps to increase the resolution of the SAR images, which helps to more accurately categorize the flooded and non-flooded areas. The quality of satellite and aerial imagery can be enhanced to recognize flooded and non-flooded areas. Our proposed approach uses a super-resolution technique to enhance the resolution of SAR images. We develop a super resolution-based generative adversarial network, or SSR-GAN (Satellite Super Resolution-based Generative adversarial network). In our approach to estimating generative models through an adversarial process, we concurrently train two different models: a generative model G and a discriminative model D. An image with low resolution is transformed into high pixel density. The peak signal-to-noise ratio (PSNR), the structural similarity index(SSIM), Multiscale Structural Similarity (MSSIM) and mean squared error (MSE) are the performance metrics used to compare the interpolation methods for enhancing resolution. In comparison to the existing approaches with our proposed model SSR-GAN, the values of PSNR, SSIM, and MSSIM are greater, and the MSE error value is lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is available on request.

References

  1. Tingsanchali, T.: Urban flood disaster management. Procedia Eng. 32, 25–37 (2012). https://doi.org/10.1016/j.proeng.2012.01.1233

    Article  Google Scholar 

  2. Dumitru, C.O., Cui, S., Faur, D., Datcu, M.: Data Analytics for rapid mapping: Case study of a flooding event in Germany and the tsunami in Japan using very high resolution SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.. 8, 114–129 (2015). https://doi.org/10.1109/jstars.2014.2320777

    Article  Google Scholar 

  3. Tong, X., Luo, X., Liu, S., Xie, H., Chao, W., Liu, S., Liu, S., Makhinov, A.N., Makhinova, A.F., Jiang, Y.: An approach for flood monitoring by the combined use of Landsat 8 optical imagery and Cosmo-skymed radar imagery. ISPRS J. Photogramm. Remote. Sens. 136, 144–153 (2018). https://doi.org/10.1016/j.isprsjprs.2017.11.006

    Article  Google Scholar 

  4. Mason, D.C., Speck, R., Devereux, B., Schumann, G.J.-P., Neal, J.C., Bates, P.D.: Flood detection in urban areas using terrasar-X. IEEE Trans. Geosci. Remote Sens. 48, 882–894 (2010). https://doi.org/10.1109/tgrs.2009.2029236

    Article  Google Scholar 

  5. Ponmani, E., Saravanan, P.: Image denoising and despeckling methods for SAR images to improve image enhancement performance: a survey. Multimed. Tool. Appl. 80, 26547–26569 (2021). https://doi.org/10.1007/s11042-021-10871-7

    Article  Google Scholar 

  6. Young, J.C., Arthur, R., Spruce, M., Williams, H.T.P.: Social sensing of flood impacts in India: a case study of Kerala 2018. Int. J. Disaster Risk Reduct. 74, 102908 (2022). https://doi.org/10.1016/j.ijdrr.2022.102908

    Article  Google Scholar 

  7. Dellepiane, S.G., Angiati, E.: Quality Assessment of despeckled SAR images. IEEE J Sel Top. Appl. Earth Obs. Remote Sens. 7, 691–707 (2014). https://doi.org/10.1109/jstars.2013.2279501

    Article  Google Scholar 

  8. Arabi Aliabad, F., Shojaei, S., Zare, M., Ekhtesasi, M.R.: Assessment of the fuzzy ARTMAP neural network method performance in geological mapping using satellite images and boolean logic. Int. J. Environ. Sci. Technol. 16, 3829–3838 (2018). https://doi.org/10.1007/s13762-018-1795-7

    Article  Google Scholar 

  9. Ghosh, S., Kumar, D., Kumari, R.: Evaluating the impact of flood inundation with the cloud computing platform over vegetation cover of Ganga Basin during COVID-19. Spat. Inf. Res. 30, 291–308 (2022). https://doi.org/10.1007/s41324-022-00430-z

    Article  Google Scholar 

  10. Toriya, H., Dewan, A., Ikeda, H., Owada, N., Saadat, M., Inagaki, F., Kawamura, Y., Kitahara, I.: Use of a DNN-based image translator with edge enhancement technique to estimate correspondence between SAR and optical images. Appl. Sci. 12, 4159 (2022). https://doi.org/10.3390/app12094159

    Article  Google Scholar 

  11. Ardakani, A.H., Shojaei, S., Siasar, H., Ekhtesasi, M.R.: Heuristic evaluation of groundwater in arid zones using remote sensing and Geographic Information System. Int. J. Environ. Sci. Technol. 17, 633–644 (2018). https://doi.org/10.1007/s13762-018-2104-1

    Article  Google Scholar 

  12. Shojaei, S., Kalantari, Z., Rodrigo-Comino, J.: Prediction of factors affecting activation of soil erosion by mathematical modeling at Pedon scale under laboratory conditions. Sci. Report. (2020). https://doi.org/10.1038/s41598-020-76926-1

    Article  Google Scholar 

  13. Li, Y., Hu, J., Jia, Y.: Automatic sar image enhancement based on nonsubsampled contourlet transform and memetic algorithm. Neurocomputing 134, 70–78 (2014). https://doi.org/10.1016/j.neucom.2013.03.068

    Article  Google Scholar 

  14. Chen, L., Jiang, X., Li, Z., Liu, X., Zhou, Z.: Feature-enhanced speckle reduction via low-rank and space-angle continuity for circular SAR target recognition. IEEE Trans. Geosci. Remote Sens. 58, 7734–7752 (2020). https://doi.org/10.1109/tgrs.2020.2983420

    Article  Google Scholar 

  15. Ye, G., Zhang, Z., Ding, L., Li, Y., Zhu, Y.: Gan-based focusing-enhancement method for monochromatic synthetic aperture imaging. IEEE Sens. J. 20, 11484–11489 (2020). https://doi.org/10.1109/jsen.2020.2996656

    Article  Google Scholar 

  16. Chandran, D.V., Anitha, J.: Change detection & flood water mapping from remotely sensed images- a survey. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). (2022). doi: https://doi.org/10.1109/icscds53736.2022.9761015

  17. Cerbelaud, A., Roupioz, L., Blanchet, G., Breil, P., Briottet, X.: A repeatable change detection approach to map extreme storm-related damages caused by intense surface runoff based on optical and SAR Remote Sensing: Evidence from three case studies in the south of France. ISPRS J. Photogramm. Remote. Sens. 182, 153–175 (2021). https://doi.org/10.1016/j.isprsjprs.2021.10.013

    Article  Google Scholar 

  18. Scotti, V., Giannini, M., Cioffi, F.: Enhanced flood mapping using synthetic aperture radar (SAR) images, hydraulic modelling, and social media: A case study of hurricane harvey. J. Flood Risk Manag. (2020). https://doi.org/10.1111/jfr3.12647

    Article  Google Scholar 

  19. Di, Z., Chen, X., Wu, Q., Shi, J., Feng, Q., Fan, Y.: Learned compression framework with pyramidal features and quality enhancement for SAR Images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022). https://doi.org/10.1109/lgrs.2022.3155651

    Article  Google Scholar 

  20. Luo, Y., Pi, D.: Sar-to-optical image translation for Quality Enhancement. J. Ambient. Intell. Humaniz. Comput. 14, 9985–10000 (2022). https://doi.org/10.1007/s12652-021-03665-0

    Article  Google Scholar 

  21. Manjusree, P., Prasanna Kumar, L., Bhatt, C.M., Rao, G.S., Bhanumurthy, V.: Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. Int. J. Disaster Risk Sci. 3, 113–122 (2012). https://doi.org/10.1007/s13753-012-0011-5

    Article  Google Scholar 

  22. Shen, X., Wang, D., Mao, K., Anagnostou, E., Hong, Y.: Inundation extent mapping by synthetic aperture radar: a review. Remote Sensing. 11, 879 (2019). https://doi.org/10.3390/rs11070879

    Article  Google Scholar 

  23. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2017). doi: https://doi.org/10.1109/cvpr.2017.106

  24. Kanakaraj, S., Nair, M.S., Kalady, S.: SAR image super resolution using importance sampling unscented Kalman filter. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 11, 562–571 (2018). https://doi.org/10.1109/jstars.2017.2779795

    Article  Google Scholar 

  25. Dubey, V., Katarya, R.: Adaptive histogram equalization based approach for SAR Image Enhancement: A Comparative Analysis. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). (2021). doi: https://doi.org/10.1109/iciccs51141.2021.9432287

  26. Zhan, Q., Chen, Y., Chen, Y., Lu, Y., Xu, C.: SAR image super-resolution reconstruction based on an optimize iterative method for regularization. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. (2021). doi: https://doi.org/10.1109/igarss47720.2021.9554072

  27. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Proc. 19, 2861–2873 (2010). https://doi.org/10.1109/tip.2010.2050625

    Article  MathSciNet  Google Scholar 

  28. Zhang, W., Gao, Y., Cao, L., Zhang, Y., Huang, Z., Wang, B.: A fundus image enhancer based on illumination-guided attention and optic disc perception gan. Optik 279, 170729 (2023). https://doi.org/10.1016/j.ijleo.2023.170729

    Article  Google Scholar 

  29. Shah, N.H., Priamvada, A., Shukla, B.P.: Random Forest-based nowcast model for rainfall. Earth Sci. Inf. 16, 2391–2403 (2023). https://doi.org/10.1007/s12145-023-01037-0

    Article  Google Scholar 

  30. Zheng, Z., Chen, Z., Wang, W., Huang, M., Wang, H.: Dual parallel multi-scale residual overlay network for single-image rain removal. SIViP 18, 2413–2428 (2023). https://doi.org/10.1007/s11760-023-02917-0

    Article  Google Scholar 

  31. El-Ashkar, A.M., Taha, T.E., El-Fishawy, A.S., Abd-Elnaby, M., Abd El-Samie, F.E., El-Shafai, W.: Simultaneous compressed sensing and single-image super resolution for SAR image reconstruction. Optical and Quantum Electronics (2023). https://doi.org/10.1007/s11082-022-04407-y

    Article  Google Scholar 

  32. Gupta, A., Katarya, R.: A deep-SIQRV epidemic model for COVID-19 to access the impact of prevention and control measures. Comput. Biol. Chem. 107, 107941 (2023). https://doi.org/10.1016/j.compbiolchem.2023.107941

    Article  Google Scholar 

  33. Thomas, M., Tellman, E., Osgood, D.E., DeVries, B., Islam, A.S., Steckler, M.S., Goodman, M., Billah, M.: A framework to assess remote sensing algorithms for satellite-based Flood Index Insurance. IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. 16, 2589–2604 (2023). https://doi.org/10.1109/jstars.2023.3244098

    Article  Google Scholar 

  34. Farooq, M.S., Tehseen, R., Qureshi, J.N., Omer, U., Yaqoob, R., Tanweer, H.A., Atal, Z.: FFM: Flood forecasting model using Federated Learning. IEEE Access. 11, 24472–24483 (2023). https://doi.org/10.1109/access.2023.3252896

    Article  Google Scholar 

  35. Gupta, A., Singh, A.: edl-nsga-ii: ensemble deep learning framework with nsga-ii feature selection for heart disease prediction. Exp. Syst. (2023). https://doi.org/10.1111/exsy.13254

    Article  Google Scholar 

  36. Mirza, M.W., Siddiq, A., Khan, I.R.: A comparative study of medical image enhancement algorithms and quality assessment metrics on COVID-19 CT Images. SIViP 17, 915–924 (2022). https://doi.org/10.1007/s11760-022-02214-2

    Article  Google Scholar 

  37. Liu, X., Ma, W., Ma, X., Wang, J.: Lae-Net: a locally-adaptive embedding network for low-light image enhancement. Pattern Recogn. 133, 109039 (2023). https://doi.org/10.1016/j.patcog.2022.109039

    Article  Google Scholar 

  38. Zhang, J., Hao, S., Rao, Y.: Pre-trained low-light image enhancement transformer. IET Image Proc. (2024). https://doi.org/10.1049/ipr2.13076

    Article  Google Scholar 

  39. Selvam, C., Jebadass, R.J., Sundaram, D., Shanmugam, L.: A novel intuitionistic fuzzy generator for low-contrast color image enhancement technique. Information Fusion. 108, 102365 (2024). https://doi.org/10.1016/j.inffus.2024.102365

    Article  Google Scholar 

  40. Anwar, S., Khan, S., Barnes, N.: A deep journey into super-resolution. ACM Comput. Surv. 53, 1–34 (2020). https://doi.org/10.1145/3390462

    Article  Google Scholar 

  41. Ye, S., Zhao, S., Hu, Y., Xie, C.: Single-Image Super-resolution challenges: A brief review. Electronics 12, 2975 (2023). https://doi.org/10.3390/electronics12132975

    Article  Google Scholar 

  42. Kowaleczko, P., Tarasiewicz, T., Ziaja, M., Kostrzewa, D., Nalepa, J., Rokita, P., Kawulok, M.: A real-world benchmark for sentinel-2 multi-image Super-Resolution. Sci. Data. (2023). https://doi.org/10.1038/s41597-023-02538-9

    Article  Google Scholar 

  43. Li, M., Hsu, W., Xie, X., Cong, J., Gao, W.: SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised Perceptual Loss Network. IEEE Trans. Med. Imaging 39, 2289–2301 (2020). https://doi.org/10.1109/tmi.2020.2968472

    Article  Google Scholar 

  44. Santos, M.S., Ren, T.I., Kalantari, N.K.: Single image HDR reconstruction using a CNN with masked features and Perceptual Loss. ACM Transactions on Graphics (2020). https://doi.org/10.1145/3386569.3392403

    Article  Google Scholar 

  45. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020). https://doi.org/10.1145/3422622

    Article  Google Scholar 

  46. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2017). doi: https://doi.org/10.1109/cvpr.2017.19

  47. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and Super-Resolution. Computer Vision—ECCV 2016, 694–711 (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Article  Google Scholar 

  48. Liu, Y., Chen, H., Chen, Y., Yin, W., Shen, C.: Generic perceptual loss for modeling structured output dependencies. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (2021). doi: https://doi.org/10.1109/cvpr46437.2021.00538

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Vinay Dubey Worked on the Conceptualization of the Idea to reach the research goals and aims, conducted a research and investigation process, and Conceived and designed the GAN-based model’s methodology and creation. Rahul Katarya helps in Validation, Formal analysis of the research idea, analysis of the collected Dataset, and Preparation for the manuscript’s presentation.

Corresponding author

Correspondence to Rahul Katarya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, V., Katarya, R. SSR-GAN: super resolution-based generative adversarial networks model for flood image enhancement. SIViP 18, 5763–5773 (2024). https://doi.org/10.1007/s11760-024-03269-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-024-03269-z

Keywords

Navigation