Abstract
Biometric systems use the unique behavioral or physical characteristics of a user to verify their claimed identity. Due to the high probability of forgery or theft of traditional passwords and keys, there is a decreasing tendency to use them in security systems. By using biometric indicators, it becomes impossible to forge or steal them. Electroencephalogram (EEG) signals meet the basic requirements of biometric indicators, making them suitable for use in authentication and crypto-biometric systems. In this paper, the first step involves extracting features from recorded EEG signals using transformer-based models within an identification system. In the second step, the extracted features are imported into a key generation system. The proposed method maps the features of each user to different segments. The distributions of the segment indexes are then used to generate repeatable keys from EEG features in future sessions. The Transformer-based identification system achieved a mean accuracy of 99.8%, and the key generation system achieved a 0.1% mean Half Total Error Rate (HTER) using five different categories of visual stimulus. The high accuracy of the proposed identification system and the low error rate of the proposed key generation system indicate that features extracted by the Transformers are a good choice for visual stimulus EEG-based biometric systems.











Similar content being viewed by others
Data availability
The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.
References
Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptography. CRC press (1996)
Ogiela, L., Ogiela, M.R.: Towards cognitive cryptography. J. Internet Serv. Inf. Secur. 4, 58–63 (2014)
Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC press (2014)
Matyáš, V., R\iha, Z.: Biometric authentication systems. In: verfügbar über: informatik. uni-augsburg. de/lit/MM-Seminar/Privacy/riha00biometric. pdf (2000)
Delac, K., Grgic, M.: A survey of biometric recognition methods. In: Electronics in Marine, 2004. Proceedings Elmar 2004. 46th International Symposium. pp. 184–193 (2004)
Ogiela, M.R., Ogiela, U.: DNA-like linguistic secret sharing for strategic information systems. Int. J. Inf. Manage. 32, 175–181 (2012). https://doi.org/10.1016/j.ijinfomgt.2011.11.016
Bajwa, G., Dantu, R.: Neurokey: Towards a new paradigm of cancelable biometrics-based key generation using electroencephalograms. Comput. Secur. 62, 95–113 (2016). https://doi.org/10.1016/j.cose.2016.06.001
Abbas, S.N., Abo-Zahhad, M., Ahmed, S.M.: State-of-the-art methods and future perspectives for personal recognition based on electroencephalogram signals. IET Biometrics. 4, 179–190 (2015). https://doi.org/10.1049/iet-bmt.2014.0040
Maiorana, E., Hine, G.E., La Rocca, D., Campisi, P.: On the vulnerability of an EEG-based biometric system to hill-climbing attacks algorithms’ comparison and possible countermeasures. In: Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference on. pp. 1–6 (2013)
Zhang, S., Sun, L., Mao, X., Hu, C., Liu, P.: Review on EEG-based authentication technology. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/5229576
Nguyen, P., Tran, D., Huang, X., Sharma, D.: A proposed feature extraction method for EEG-based person identification. In: Proceedings on the International Conference on Artificial Intelligence (ICAI). pp. 1 (2012)
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38, 97–139 (2008). https://doi.org/10.1137/060651380
Katsumata, S., Matsuda, T., Nakamura, W., Ohara, K., Takahashi, K.: Revisiting Fuzzy Signatures: Towards a More Risk-Free Cryptographic Authentication System based on Biometrics. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. ACM (2021)
Jana, A., Paudel, B., Sarker, M.K., Ebrahimi, M., Hitzler, P., Amariucai, G.T.: Neural fuzzy extractors: A secure way to use artificial neural networks for biometric user authentication. Proc. Priv. Enhanc Technol. 2022, 86–104 (2022). https://doi.org/10.56553/popets-2022-0100
Gui, Q., Jin, Z., Xu, W.: Exploring EEG-based biometrics for user identification and authentication. In: 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). pp. 1–6 (2014)
Zeynali, M., Seyedarabi, H.: ScienceDirect EEG-based single-channel authentication systems with optimum electrode placement for different mental activities. Biomed. J. 42, 261–267 (2019). https://doi.org/10.1016/j.bj.2019.03.005
Yap, H.Y., Choo, Y.-H., Mohd Yusoh, Z.I., Khoh, W.H.: An evaluation of transfer learning models in EEG-based authentication. Brain Informatics. 10, 19 (2023)
Bidgoly, A.J., Bidgoly, H.J., Arezoumand, Z.: Towards a universal and privacy preserving EEG-based authentication system. Sci. Rep. 12, 1–12 (2022)
Tatar, A.B.: Biometric identification system using EEG signals. Neural Comput. Appl. 35, 1009–1023 (2023)
Ma, L., Minett, J.W., Blu, T., Wang, W.S.Y.: Resting state EEG-based biometrics for individual identification using convolutional neural networks. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 2848–2851 (2015)
Yu, T., Wei, C.S., Chiang, K.J., Nakanishi, M., Jung, T.P.: EEG-Based User Authentication Using a Convolutional Neural Network. Int. IEEE/EMBS Conf. Neural Eng. NER. 2019-March, 1011–1014 (2019). https://doi.org/10.1109/NER.2019.8716965
Sun, Y., Lo, F.P.-W., Lo, B.: EEG-based user identification system using 1D-convolutional long short-term memory neural networks. Expert Syst. Appl. 125, 259–267 (2019)
Wilaiprasitporn, T., Ditthapron, A., Matchaparn, K., Tongbuasirilai, T., Banluesombatkul, N., Chuangsuwanich, E.: Affective EEG-based person identification using the deep learning approach. IEEE Trans. Cogn. Dev. Syst. 12, 486–496 (2019)
Vadher, H., Patel, P., Nair, A., Vyas, T., Desai, S., Gohil, L., Tanwar, S., Garg, D., Singh, A.: EEG-based biometric authentication system using convolutional neural network for military applications. Secur. Priv. 7, e345 (2024)
Alsumari, W., Hussain, M., Alshehri, L., Aboalsamh, H.A.: Eeg-based person identification and authentication using deep convolutional neural network. Axioms. 12, 74 (2023)
Zeynali, M., Seyedarabi, H., Afrouzian, R.: Classification of EEG signals using Transformer based deep learning and ensemble models. Biomed. Signal Process. Control 86, 105130 (2023)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30, (2017)
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022 (2021)
Tao, Y., Sun, T., Muhamed, A., Genc, S., Jackson, D., Arsanjani, A., Yaddanapudi, S., Li, L., Kumar, P.: Gated transformer for decoding human brain eeg signals. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine \& Biology Society (EMBC). pp. 125–130 (2021)
Du, Y., Xu, Y., Wang, X., Liu, L., Ma, P.: ETST: EEG transformer for person identification. (2022)
Ma, Y., Song, Y., Gao, F.: A novel hybrid CNN-transformer model for EEG motor imagery classification. In: 2022 International Joint Conference on Neural Networks (IJCNN). pp. 1–8 (2022)
Xie, J., Zhang, J., Sun, J., Ma, Z., Qin, L., Li, G., Zhou, H., Zhan, Y.: A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2126–2136 (2022)
Wang, Z., Wang, Y., Hu, C., Yin, Z., Song, Y.: Transformers for eeg-based emotion recognition: A hierarchical spatial information learning model. IEEE Sens. J. 22, 4359–4368 (2022)
Arjun, A., Rajpoot, A.S., Panicker, M.R.: Introducing attention mechanism for eeg signals: Emotion recognition with vision transformers. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine\& Biology Society (EMBC). pp. 5723–5726 (2021)
Li, C., Huang, X., Song, R., Qian, R., Liu, X., Chen, X.: EEG-based seizure prediction via transformer guided CNN. Measurement 203, 111948 (2022)
Lee, Y.-E., Lee, S.-H.: Eeg-transformer: Self-attention from transformer architecture for decoding eeg of imagined speech. In: 2022 10th International Winter Conference on Brain-Computer Interface (BCI). pp. 1–4 (2022)
Kim, D., Lee, J., Woo, Y., Jeong, J., Kim, C., Kim, D.-K.: Deep learning application to clinical decision support system in sleep stage classification. J. Pers. Med. 12, 136 (2022)
Cai, H., Jin, J., Wang, H., Li, L., Huang, Y., Pan, J.: AITST—affective EEG-based person identification via interrelated temporal–spatial transformer. Pattern Recognit. Lett. 174, 32–38 (2023)
Ravi, K.V.R., Palaniappan, R., Eswaran, C., Phon-Amnuaisuk, S.: Data Encryption Using Event-related Brain Signals. In: International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). pp. 540–544. IEEE (2007)
Palaniappan, R., Gosalia, J., Revett, K., Samraj, A.: PIN generation using single channel EEG biometric. Commun. Comput. Inf. Sci. 193 CCIS, 378–385 (2011). https://doi.org/10.1007/978-3-642-22726-4_40
Lokeshwari, G., Udaya, S., Aparna, G.: A novel approach for data encryption using EEG, SPIHT and genetic algorithm for secured applications. Int J Power Control Signal Comput. 5, 23–27 (2013)
Akhila, V.A., Arunvinodh, C., Reshmi, K.C., Sakthiprasad, K.M.: A new cryptographic key generation scheme using psychological signals. Procedia Technol. 25, 286–292 (2016). https://doi.org/10.1016/j.protcy.2016.08.109
Zeynali, M., Seyedarabi, H., Mozaffari Tazehkand, B.: Development of a unique biometric-based cryptographic key generation with repeatability using brain signals. J. AI Data Min. 8, 343–356 (2020)
Nguyen, D., Tran, D., Sharma, D.: A Study on the impact of alcoholism on EEG-based cryptographic key generation systems. 2020 IEEE Symp. Ser. Comput. Intell. SSCI 2020. 79–85 (2020). https://doi.org/10.1109/SSCI47803.2020.9308231
Wang, Y., Wu, D., Liu, X., Hei, X.: Never lost keys: A novel key generation scheme based on motor imagery EEG in end-edge-cloud system. China Commun. 19, 172–184 (2022). https://doi.org/10.23919/JCC.2022.07.014
Hernández-Álvarez, L., Barbierato, E., Caputo, S., de Fuentes, J.M., González-Manzano, L., Encinas, L.H., Mucchi, L.: KeyEncoder: A secure and usable EEG-based cryptographic key generation mechanism. Pattern Recognit. Lett. 173, 1–9 (2023)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2414–2423 (2016)
Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L., Liu, T.: On layer normalization in the transformer architecture. In: International Conference on Machine Learning. pp. 10524–10533 (2020)
Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D.F., Chao, L.S.: Learning deep transformer models for machine translation. arXiv Prepr. arXiv1906.01787. (2019)
Baevski, A., Auli, M.: Adaptive input representations for neural language modeling. arXiv Prepr. arXiv1809.10853. (2018)
Monrose, F., Reiter, M.K., Qi Li, Wetzel, S.: Cryptographic key generation from voice. In: Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001. pp. 202–213. IEEE Comput. Soc (2001)
Yao-Jen Chang, Wende Zhang, Tsuhan Chen: Biometrics-based cryptographic key generation. In: 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763). pp. 2203–2206. IEEE (2004)
Analysis, P.A.R.O.C., Sammut, I.C., Webb, G.I.: ( Eds .), Encyclopedia of machine learning and data mining ( pp. 1–8 ) (2016)
Funding
This research received no external funding.
Author information
Authors and Affiliations
Contributions
MZ: Conceptualization, Methodology, Data curation; Software, Formal analysis, Writing—Original Draft, Writing. HN: Conceptualization, Methodology, Formal analysis, Investigation, Writing—Original Draft. HS: Conceptualization, Supervision, Writing—Review Editing, Project administration, Validation, Resources.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethical approval
This human study was approved by Research Ethics Committees of University of Tabriz—approval: IR.TABRIZ.REC.1402.084. All adult participants provided written informed consent to participate in this study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zeynali, M., Narimani, H. & Seyedarabi, H. EEG-based identification and cryptographic key generation system using extracted features from transformer-based models. SIViP 18, 9331–9346 (2024). https://doi.org/10.1007/s11760-024-03549-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-024-03549-8