Skip to main content

Advertisement

Log in

Privacy-preserving for the internet of things in multi-objective task scheduling in cloud-fog computing using goal programming approach

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For the Internet of Things (IoT) that have low processing power, fog computing can play an essential role as a processing resource to execute their tasks. Timely execution of the service and the optimal service cost are two major challenges of task scheduling in fog computing. In this article, a privacy architecture is proposed for task scheduling in IoT, and based on this architecture, a multi-objective algorithm is presented to minimize the service time and service cost. We simulate the problem with four scenarios: easy, medium, semi-hard, and hard, and then compare it with other multi-objective algorithms. Since the proposed algorithm is multi-objective, the goal programming approach (GPA) is used to choose one possible solution. The simulation results show that our proposed algorithm has better performance and higher convergence speed to the optimal solution than other algorithms while considering the privacy requirements of IoT devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Multi-Objective Particle Swarm Optimization.

  2. Multi-Objective Tabu Search.

  3. Multi-Objective Moth-Flame optimization.

References

  1. Mouradian C, Naboulsi D, Yangui S et al (2018) A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Commun Surv Tutorials 20:416–464. https://doi.org/10.1109/COMST.2017.2771153

    Article  Google Scholar 

  2. Perera C, Qin Y, Estrella JC et al (2017) Fog Computing for Sustainable Smart Cities: A Survey. ACM Comput Surv 50:1–43. https://doi.org/10.1145/3057266

    Article  Google Scholar 

  3. Songhorabadi M, Rahimi M, Farid AMM, Kashani MH (2020) Fog Computing Approaches in Smart Cities: A State-of-the-Art Review. arXiv preprint arXiv:2011.14732

  4. Kashani MH, Ahmadzadeh A, Mahdipour E (2020) Load balancing mechanisms in fog computing: A systematic review. arXiv Prepr. arXiv2011.14706

  5. Dastjerdi AV, Gupta H, Calheiros RN et al (2016) Fog Computing: principles, architectures, and applications. In: Internet of Things. Elsevier, pp 61–75

  6. Nguyen BM, Thi Thanh Binh H, The Anh T, Bao Son D (2019) Evolutionary Algorithms to Optimize Task Scheduling Problem for the IoT Based Bag-of-Tasks Application in Cloud-Fog Computing Environment. Appl Sci 9:1730. https://doi.org/10.3390/app9091730

    Article  Google Scholar 

  7. Naha RK, Garg S, Georgakopoulos D et al (2018) Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access 6:47980–48009. https://doi.org/10.1109/ACCESS.2018.2866491

    Article  Google Scholar 

  8. Najafizadeh A, Salajegheh A, Rahmani AM, Sahafi A (2020) Task Scheduling in Fog Computing: A Survey. J Adv Comput Res 11:1–10

    Google Scholar 

  9. Abi Sen AA, Eassa FA, Jambi K (2018) Preserving Privacy of Smart Cities Based on the Fog Computing. Lecture Notes of the Institute for Computer Sciences. LNICST. Springer Verlag, Social-Informatics and Telecommunications Engineering, pp 185–191

    Google Scholar 

  10. Khalid T, Abbasi MAK, Zuraiz M et al (2019) A survey on privacy and access control schemes in fog computing. Int J Commun Syst e4181. https://doi.org/10.1002/dac.4181

  11. Liu Z, Zhang J, Li Y et al (2018) Joint Jobs Scheduling and Lightpath Provisioning in Fog Computing Micro Datacenter Networks. J Opt Commun Netw 10:B152. https://doi.org/10.1364/jocn.10.00b152

    Article  Google Scholar 

  12. Wang J, Li D (2019) Task Scheduling Based on a Hybrid Heuristic Algorithm for Smart Production Line with Fog Computing. Sensors 19:1023. https://doi.org/10.3390/s19051023

    Article  Google Scholar 

  13. Wan J, Chen B, Wang S et al (2018) Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart Factory. IEEE Trans Ind Informatics 14:4548–4556. https://doi.org/10.1109/TII.2018.2818932

    Article  Google Scholar 

  14. Xu R, Wang Y, Cheng Y et al (2019) Improved Particle Swarm Optimization Based Workflow Scheduling in Cloud-Fog Environment. In: Lecture Notes in Business Information Processing. pp 337–347

  15. Ni L, Zhang J, Jiang C et al (2017) Resource Allocation Strategy in Fog Computing Based on Priced Timed Petri Nets. IEEE Internet Things J 4:1216–1228. https://doi.org/10.1109/JIOT.2017.2709814

    Article  Google Scholar 

  16. Pham X-Q, Man ND, Tri NDT et al (2017) A cost- and performance-effective approach for task scheduling based on collaboration between cloud and fog computing. Int J Distrib Sens Networks 13:155014771774207. https://doi.org/10.1177/1550147717742073

    Article  Google Scholar 

  17. Wang X, Ning Z, Wang L (2018) Offloading in Internet of Vehicles: A Fog-Enabled Real-Time Traffic Management System. IEEE Trans Ind Informatics 14:4568–4578. https://doi.org/10.1109/TII.2018.2816590

    Article  Google Scholar 

  18. Deng R, Lu R, Lai C et al (2016) Optimal Workload Allocation in Fog-Cloud Computing Toward Balanced Delay and Power Consumption. IEEE Internet Things J 3:1171–1181. https://doi.org/10.1109/JIOT.2016.2565516

    Article  Google Scholar 

  19. Yin L, Luo J, Luo H (2018) Tasks Scheduling and Resource Allocation in Fog Computing Based on Containers for Smart Manufacturing. IEEE Trans Ind Informatics 14:4712–4721. https://doi.org/10.1109/TII.2018.2851241

    Article  Google Scholar 

  20. Zeng D, Gu L, Guo S et al (2016) Joint Optimization of Task Scheduling and Image Placement in Fog Computing Supported Software-Defined Embedded System. IEEE Trans Comput 65:3702–3712. https://doi.org/10.1109/TC.2016.2536019

    Article  MathSciNet  MATH  Google Scholar 

  21. Abubaker N, Dervishi L, Ayday E (2017) Privacy-preserving fog computing paradigm. In: 2017 IEEE Conference on Communications and Network Security (CNS). IEEE, pp 502–509

  22. Zhang L, Li J (2018) Enabling Robust and Privacy-Preserving Resource Allocation in Fog Computing. IEEE Access 6:50384–50393. https://doi.org/10.1109/ACCESS.2018.2868920

    Article  Google Scholar 

  23. Fizza K, Auluck N, Rana O, Bittencourt L (2018) PASHE: Privacy Aware Scheduling in a Heterogeneous Fog Environment. In: Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018. IEEE, pp 333–340

  24. Tim Mather, Subra Kumaraswamy SL (2009) Cloud Security and Privacy An Enterprise Prespective on Risks and Compliance. O’Reilly

  25. Costante E (2015) Privacy throughout the Data Cycle. PhD thesis, Eindhoven University of Technology

  26. Costante E, Paci F, Zannone N (2015) Privacy-aware web service composition and ranking. In: Standards and Standardization: Concepts, Methodologies, Tools, and Applications. IEEE, pp 1653–1675

  27. Lin X, Ni J, Shen X (2018) Privacy-Enhancing Fog Computing and Its Applications. Springer International Publishing, Cham

    Book  Google Scholar 

  28. Bilogrevic I, Jadliwala M, Kumar P et al (2011) Meetings through the cloud: Privacy-preserving scheduling on mobile devices. J Syst Softw 84:1910–1927. https://doi.org/10.1016/j.jss.2011.04.027

    Article  Google Scholar 

  29. Liu E, Cheng P (2017) Achieving Privacy Protection Using Distributed Load Scheduling: A Randomized Approach. IEEE Trans Smart Grid 8:2460–2473. https://doi.org/10.1109/TSG.2017.2703400

    Article  Google Scholar 

  30. Wen Y, Liu J, Dou W et al (2020) Scheduling workflows with privacy protection constraints for big data applications on cloud. Futur Gener Comput Syst 108:1084–1091. https://doi.org/10.1016/j.future.2018.03.028

    Article  Google Scholar 

  31. Charnes A, Cooper WW, Ferguson RO (1955) Optimal Estimation of Executive Compensation by Linear Programming. Manage Sci 1:138–151. https://doi.org/10.1287/mnsc.1.2.138

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu HQ, Wang L, Xue G (2019) Privacy-aware Task Allocation and Data Aggregation in Fog-assisted Spatial Crowdsourcing IEEE Trans Netw Sci Eng 1–1. https://doi.org/10.1109/TNSE.2019.2892583

  33. Asghari P, Rahmani AM, Javadi HHS (2020) Privacy-aware cloud service composition based on QoS optimization in Internet of Things. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-01723-7

    Article  Google Scholar 

  34. Al Hamid HA, Rahman SMM, Hossain MS et al (2017) A Security Model for Preserving the Privacy of Medical Big Data in a Healthcare Cloud Using a Fog Computing Facility With Pairing-Based Cryptography. IEEE Access 5:22313–22328. https://doi.org/10.1109/ACCESS.2017.2757844

    Article  Google Scholar 

  35. Lu R, Heung K, Lashkari AH, Ghorbani AA (2017) A Lightweight Privacy-Preserving Data Aggregation Scheme for Fog Computing-Enhanced IoT. IEEE Access 5:3302–3312. https://doi.org/10.1109/ACCESS.2017.2677520

    Article  Google Scholar 

  36. Lyu L, Nandakumar K, Rubinstein B et al (2018) PPFA: Privacy Preserving Fog-Enabled Aggregation in Smart Grid. IEEE Trans Ind Informatics 14:3733–3744. https://doi.org/10.1109/TII.2018.2803782

    Article  Google Scholar 

  37. Du M, Wang K, Liu X et al (2019) A Differential Privacy-Based Query Model for Sustainable Fog Data Centers. IEEE Trans Sustain Comput 4:145–155. https://doi.org/10.1109/TSUSC.2017.2715038

    Article  Google Scholar 

  38. Wang T, Zhou J, Chen X et al (2018) A Three-Layer Privacy Preserving Cloud Storage Scheme Based on Computational Intelligence in Fog Computing. IEEE Trans Emerg Top Comput Intell 2:3–12. https://doi.org/10.1109/TETCI.2017.2764109

    Article  Google Scholar 

  39. Rahimi M, Songhorabadi M, Kashani MH (2020) Fog-based smart homes: A systematic review. J Netw Comput Appl 153:102531. https://doi.org/10.1016/j.jnca.2020.102531

    Article  Google Scholar 

  40. Hu P, Dhelim S, Ning H, Qiu T (2017) Survey on fog computing: architecture, key technologies, applications and open issues. J Netw Comput Appl 98:27–42. https://doi.org/10.1016/j.jnca.2017.09.002

    Article  Google Scholar 

  41. Haghi Kashani M, Rahmani AM, Jafari Navimipour N (2020) Quality of service-aware approaches in fog computing. Int J Commun Syst 33:e4340. https://doi.org/10.1002/dac.4340

    Article  Google Scholar 

  42. Alrawais A, Alhothaily A, Hu C, Cheng X (2017) Fog Computing for the Internet of Things: Security and Privacy Issues. IEEE Internet Comput 21:34–42. https://doi.org/10.1109/MIC.2017.37

    Article  Google Scholar 

  43. Zhang Z, Wang X, Uden L et al (2018) e -DMDAV: A new privacy preserving algorithm for wearable enterprise information systems. Enterp Inf Syst 12:492–504. https://doi.org/10.1080/17517575.2017.1308559

    Article  Google Scholar 

  44. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Manage Sci. https://doi.org/10.1126/science.220.4598.671

    Article  MATH  Google Scholar 

  45. Coello Coello CA, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279

    Article  Google Scholar 

  46. Corne D, Jerram N, Knowles J et al (2001) PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization. Proc Genet Evol Comput Conf 283–290

  47. Coello Coello CA, Lechuga MS (2002) MOPSO: A proposal for multiple objective particle swarm optimization. Proc 2002 Congr Evol Comput CEC 2:1051–1056.https://doi.org/10.1109/CEC.2002.1004388

  48. Téllez N, Jimeno M, Salazar A, Nino-Ruiz ED (2018) A Tabu search method for load balancing in fog computing. Int J Artif Intell 16:

  49. Ghobaei-Arani M, Souri A, Safara F, Norouzi M (2020) An efficient task scheduling approach using moth-flame optimization algorithm for cyber-physical system applications in fog computing. Trans Emerg Telecommun Technol 31:1–17. https://doi.org/10.1002/ett.3770

    Article  Google Scholar 

  50. Sun Y, Lin F, Xu H (2018) Multi-objective Optimization of Resource Scheduling in Fog Computing Using an Improved NSGA-II. Wirel Pers Commun 102:1369–1385. https://doi.org/10.1007/s11277-017-5200-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Salajegheh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafizadeh, A., Salajegheh, A., Rahmani, A.M. et al. Privacy-preserving for the internet of things in multi-objective task scheduling in cloud-fog computing using goal programming approach. Peer-to-Peer Netw. Appl. 14, 3865–3890 (2021). https://doi.org/10.1007/s12083-021-01222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-021-01222-2

Keywords

Navigation