Skip to main content
Log in

Convergence analysis of Galerkin and multi-Galerkin methods for linear integral equations on half-line using Laguerre polynomials

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper considers the Galerkin and multi-Galerkin methods and their iterated versions to solve the linear Fredholm integral equation of the second kind on the half-line with sufficiently smooth kernels, using Laguerre polynomials as basis functions. Here we are able to prove that approximate solution in Galerkin method converges to the exact solution with order \(\mathcal {O}(n^{-\frac{r}{2}})\) in weighted \(L^{2}-\)norm. Also the approximate solution in iterated-Galerkin method converges with order \(\mathcal {O}(n^{-r})\) in both infinity and weighted \(L^{2}-\)norm, where r is the smoothness of the solution and n is the highest degree of the Laguerre polynomials employed in the approximation. We also show that multi-Galerkin and iterated multi-Galerkin methods gives superconvergence results using Laguerre polynomials. In fact, we are able to establish that the approximate solutions in multi-Galerkin and iterated multi-Galerkin methods converges to the exact solution with orders \(\mathcal {O}(n^{-\frac{3r}{2}})\) and \(\mathcal {O}(n^{-2r}),\) respectively, in weighted \(L^{2}-\)norm. Numerical results are presented to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Amini S, Sloan IH (1989) Collocation methods for the second kind integral equations with non-compact operators. J Integral Equ Appl 2(1):1–30

    Article  MATH  Google Scholar 

  • Anselone PM, Sloan IH (1987) Numerical solutions of integral equations on the half-line. Numer Math 51(6):599–614

    Article  MathSciNet  MATH  Google Scholar 

  • Anselone PM, Sloan IH (1988) Numerical solutions of integral equations on the half-line II, the Wiener-Hopf case. University of NSW, Sydney

    MATH  Google Scholar 

  • Anselone P, Sloan IH (1985) Integral-equations on the half-line. J Integral Equ 9(1):3–23

    MathSciNet  MATH  Google Scholar 

  • Atkinson K (1969) The numerical solution of integral equations on the half-line. SIAM J Numer Anal 6(3):375–397

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson K (1997) The numerical solution of boundary integral equations, Institute of Mathematics and its Applications Conference Series, Vol. Oxford University Press. 63:223–260

  • Chandler G, Graham IG (1987) The convergence of Nyström methods for Wiener-Hopf equations. Numer Math 52(3):345–364

    Article  MATH  Google Scholar 

  • Chen Z, Long G, Nelakanti G (2007) The discrete multi-projection method for Fredholm integral equations of the second kind. J Integral Equ Appl 19(2):143–162

    Article  MathSciNet  MATH  Google Scholar 

  • Das P, Nelakanti G (2015) Convergence analysis of discrete Legendre spectral projection methods for Hammerstein integral equations of mixed type. Appl Math Comput 265:574–601

    MathSciNet  MATH  Google Scholar 

  • Das P, Nelakanti G (2017) Error analysis of discrete legendre multi-projection methods for nonlinear Fredholm integral equations. Numer Funct Anal Optim 38(5):549–574

    Article  MathSciNet  MATH  Google Scholar 

  • Das P, Nelakanti G (2018) Error analysis of polynomial-based multi-projection methods for a class of nonlinear Fredholm integral equations. J Appl Math Comput 56(1–2):1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Das P, Nelakanti G, Long G (2015) Discrete legendre spectral projection methods for Fredholm–Hammerstein integral equations. J Comput Appl Math 278:293–305

    Article  MathSciNet  MATH  Google Scholar 

  • Das P, Sahani MM, Nelakanti G, Long G (2016) Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J Sci Comput 68(1):213–230

    Article  MathSciNet  MATH  Google Scholar 

  • Edmond C (2008) An integral equation representation for overlapping generations in continuous time. J Econ Theory 143(1):596–609

    Article  MathSciNet  MATH  Google Scholar 

  • Graham IG, Mendes WR (1989) Nyström-product integration for Wiener–Hopf equations with applications to radiative transfer. IMA J Numer Anal 9(2):261–284

    Article  MathSciNet  MATH  Google Scholar 

  • Gülsu M, Gürbüz B, Öztürk Y, Sezer M (2011) Laguerre polynomial approach for solving linear delay difference equations. Appl Math Comput 217(15):6765–6776

    MathSciNet  MATH  Google Scholar 

  • Guo B (1998) Spectral methods and their applications. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Guo B, Wang L, Wang Z (2006) Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J Numer Anal 43(6):2567–2589

    Article  MathSciNet  MATH  Google Scholar 

  • Kulkarni RP (2003) A superconvergence result for solutions of compact operator equations. Bull Aust Math Soc 68(3):517–528

    Article  MathSciNet  MATH  Google Scholar 

  • Kulkarni RP, Nelakanti G (2004) Spectral refinement using a new projection method. ANZIAM J 46(2):203–224

    Article  MathSciNet  MATH  Google Scholar 

  • Long NN, Eshkuvatov Z, Yaghobifar M, Hasan M (2008) Numerical solution of infinite boundary integral equation by using Galerkin method with Laguerre polynomials. World Acad Sci Eng Technol 47:334–337

    Google Scholar 

  • Long G, Nelakanti G (2010) The multi-projection method for weakly singular Fredholm integral equations of the second kind. Int J Comput Math 87(14):3254–3265

    Article  MathSciNet  MATH  Google Scholar 

  • Long G, Nelakanti G, Panigrahi BL, Sahani MM (2010) Discrete multi-projection methods for eigen-problems of compact integral operators. Appl Math Comput 217(8):3974–3984

    MathSciNet  MATH  Google Scholar 

  • Long G, Sahani MM, Nelakanti G (2009) Polynomially based multi-projection methods for Fredholm integral equations of the second kind. Appl Math Comput 215(1):147–155

    MathSciNet  MATH  Google Scholar 

  • Mandal M, Nelakanti G (2017) Superconvergence of legendre spectral projection methods for Fredholm-Hammerstein integral equations. J Comput Appl Math 319:423–439

    Article  MathSciNet  MATH  Google Scholar 

  • Mastroianni G, Monegato G (1997) Nyström interpolants based on zeros of Laguerre polynomials for some Weiner-Hopf equations. IMA J Numer Anal 17(4):621–642

    Article  MathSciNet  MATH  Google Scholar 

  • Nahid N, Das P, Nelakanti G (2019) Projection and multi projection methods for nonlinear integral equations on the half-line. J Comput Appl Math 359:119–144

    Article  MathSciNet  MATH  Google Scholar 

  • Parand K, Babolghani FB (2012) Modified generalized Laguerre functions for a numerical investigation of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet. World Appl Sci J 17(12):1578–1587

    Google Scholar 

  • Rahmoune A (2013) Spectral collocation method for solving Fredholm integral equations on the half-line. Appl Math Comput 219(17):9254–9260

    MathSciNet  MATH  Google Scholar 

  • Sánchez-Ruiz J, López-Artés P, Dehesa J (2003) Expansions in series of varying Laguerre polynomials and some applications to molecular potentials. J Comput Appl Math 153(1–2):411–421

    Article  MathSciNet  MATH  Google Scholar 

  • Valenciano J, Chaplain MA (2005) A Laguerre-Legendre spectral-element method for the solution of partial differential equations on infinite domains: Application to the diffusion of tumour angiogenesis factors. Math Comput Model 41(10):1171–1192

    Article  MathSciNet  MATH  Google Scholar 

  • Xuan Y, Lin FR (2012) Numerical methods based on rational variable substitution for Wiener–Hopf equations of the second kind. J Comput Appl Math 236(14):3528–3539

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Nilofar Nahid would like to acknowledge the support of National Board for Higher Mathematics (Ref no: 2/39(2)/2014/NBHM/R & D-II/8020 dated. 26.06.2014) for her PhD fellowship. The research work of Gnaneshwar Nelakanti was supported by the National Board for Higher Mathematics, India, research project: No02011/6/2019NBHM(R.P)/R & D II /1236 dated 28/1/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilofar Nahid.

Additional information

Communicated by Hui Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahid, N., Nelakanti, G. Convergence analysis of Galerkin and multi-Galerkin methods for linear integral equations on half-line using Laguerre polynomials. Comp. Appl. Math. 38, 182 (2019). https://doi.org/10.1007/s40314-019-0967-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0967-5

Keywords

Mathematics Subject Classification

Navigation