Skip to main content

Advertisement

Log in

Evo-Devo Path as a Bridge between Evolution, Morphological Disparity, and Medicine with Comments on “Hopeful Monsters” in the Age of Genomics

  • Evolutionary Developmental Biology (R Diogo and E Boyle, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Since its inception in the late 1970s/early 1980s, Evolutionary Developmental Biology (Evo-Devo) has produced much insight into the evolution of organismal design. Despite the obvious roots connecting Evo-Devo studies to pathology, malformations have been ignored as possible adaptive phenotypes within a different ecological or phylogenetic context and may provide insight into studies of macroevolution. While early opponents of the Modern Synthesis such as Richard Goldschmidt rooted for “hopeful monsters,” this idea was poorly supported and until recently has gone without many examples.

Recent Findings

Evo-Devo Path [1, 2] builds upon the theoretical framework of early biologists like Pere Alberch while also bridging our current understanding of genomics and development with the hierarchical organization of pathologies established by Isidore Gregory Saint-Hilaire and morphological disparity, thus further challenging the Modern Synthesis and interrupting the boundary between disease and novelty and serving as a bridge between the fields of biomedical research and natural history.

Summary

Mutations in the regulation and expression of genes within our genome recur as categorizable malformations through the perturbation of key signaling pathways. With the advent of Evo-Devo and genomic advancements over the last few decades, we are able to revisit the micro-evolutionary-centered Modern Synthesis and the idea of “hopeful monsters” to find that unlike the contentious aura which surrounded Goldschmidt’s work, we may now be in a position to re-examine his theoretical framework along with the tenets of the modern synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Diogo R, Smith CM, Ziermann JM. 2015. Evolutionary developmental pathology and anthropology: a new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev Dyn 244:1357–1374. Available from: https://doi.org/10.1002/dvdy.24336

  2. Diogo R, Guinard G, Diaz RE Jr. 2017. Dinosaurs, Chameleons, humans, and Evo-Devo Path: linking Étienne Geoffroy’s teratology, Waddington’s homeorhesis, Alberch’s logic of “monsters,” and Goldschmidt hopeful “monsters.” J Exp Zool Part B Mol Dev Evol 328:207–229. Available from: https://doi.org/10.1002/jez.b.22709.

  3. McKinney ML. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516. Available from: https://doi.org/10.1146/annurev.ecolsys.28.1.495.

  4. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007.

  5. Coates DJ, Byrne M, Moritz C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front Ecol Evol. 2018;6:165. Available from:. https://doi.org/10.3389/fevo.2018.00165.

    Article  Google Scholar 

  6. Colwell RK. 2014. III.1 biodiversity: concepts, patterns, and measurement. In: The Princeton Guide to Ecology.

  7. Daly AJ, Baetens JM, De Baets B. 2018. Ecological diversity: measuring the unmeasurable. Mathematics.

  8. Purvis A, Hector A. 2000. Getting the measure of biodiversity. Nature 405:212–219. Available from: https://doi.org/10.1038/35012221.

  9. Chartier M, Jabbour F, Gerber S, Mitteroecker P, Sauquet H, von Balthazar M, Staedler Y, Crane PR, Schönenberger J. 2014. The floral morphospace – a modern comparative approach to study angiosperm evolution. New Phytol 204:841–853. Available from: https://doi.org/10.1111/nph.12969

  10. Erwin DH. 2007. Disparity: morphological pattern and developmental context. In: Palaeontology.

  11. Hopkins MJ, Gerber S. 2017. Morphological disparity. In: de la Rosa L, Müller G, editors. Evolutionary developmental biology: a reference guide. Cham: springer international publishing. p 1–12. Available from: https://doi.org/10.1007/978-3-319-33038-9_132-1.

  12. Wills MA, Briggs DEG, Fortey RA. Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology. 1994;20:93–130.

    Article  Google Scholar 

  13. Darwin C. 1859. On the origin of the species.

  14. Darwin C, Wallace A. 1858. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Zool J Linn Soc 3:45–62. Available from: https://doi.org/10.1111/j.1096-3642.1858.tb02500.x.

  15. Lamarck J-B. Philosophie zoologique; ou. Philos Zool: Exposition des considérations relatives à l’histoire naturelle des animaux; 1809.

    Google Scholar 

  16. Futuyma DJ. Evolution. Massachusetts: Sinauer Associates; 2005.

    Google Scholar 

  17. Koonin EV. Darwinian evolution in the light of genomics. Nucleic Acids Res. 2009;37:1011–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, et al. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc B Biol Sci. 2015.

  19. Barresi MJ, Gilbert SF. Developmental biology. 12th ed: Sinauer Associates; 2019.

  20. Carroll SB. Endless forms: the evolution of gene regulation and morphological diversity. Cell. 2000.

  21. Carroll SB, Grenier JK, Weatherbee SD. From DNA to diversity: molecular genetics and the evolution of animal design. 2nd ed: Blackwell Publishers; 2004.

  22. Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature. 2009;457:818–23.

    Article  CAS  PubMed  Google Scholar 

  23. Pigliucci M. 2007. Do we need an extended evolutionary synthesis? Evolution (N Y).

  24. Charlesworth D, Barton NH, Charlesworth B. The sources of adaptive variation. Proc R Soc B Biol Sci. 2017.

  25. Delisle RG. 2011. What was really synthesized during the evolutionary synthesis? A historiographic proposal. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci.

  26. Hua X, Bromham L. Darwinism for the genomic age: connecting mutation to diversification. Front Genet. 2017.

  27. Müller GB. Evo-devo: extending the evolutionary synthesis. Nat Rev Genet. 2007;8:943–9.

    Article  PubMed  CAS  Google Scholar 

  28. Müller GB. 2017. Why an extended evolutionary synthesis is necessary. Interface Focus 7:20170015. Available from: https://doi.org/10.1098/rsfs.2017.0015.

  29. Rose MR, Oakley TH. The new biology: beyond the modern synthesis. Biol Direct. 2007.

  30. Simpson GG. Tempo and mode in evolution. New York: Columbia University Press; 1944.

    Google Scholar 

  31. Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217:624–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1983.

    Book  Google Scholar 

  33. Kondo S, Iwashita M, Yamaguchi M. How animals get their skin patterns: fish pigment pattern as a live Turing wave. Int J Dev Biol. 2009.

  34. Lin C-M, Jiang TX, Baker RE, Maini PK, Widelitz RB, Chuong C-M. Spots and stripes: pleomorphic patterning of stem cells via p-ERK-dependent cell chemotaxis shown by feather morphogenesis and mathematical simulation. Dev Biol. 2009;334:369–82 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19647731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maini PK, Woolley TE, Baker RE, Gaffney EA, Seirin Lee S. 2012. Turing’s model for biological pattern formation and the robustness problem. Interface Focus.

  36. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell [Internet]. 2017;169:1177–86 Available from: https://pubmed.ncbi.nlm.nih.gov/28622505.

    Article  CAS  Google Scholar 

  37. Gould SJ. Ontogeny and phylogeny. Cambridge: Harvard University Press; 1977.

    Google Scholar 

  38. Bonner JT ed. 1981. Evolution and development. Springer-Verlag.

  39. Goldschmidt R. The material basis of evolution. New Haven: Yale University Press; 1940.

    Google Scholar 

  40. Gould SJ. Is a new and general theory of evolution emerging? Paleobiology. 1980;6:119–30.

    Article  Google Scholar 

  41. Dietrich MR. 2000. From hopeful monsters to homeotic effects: Richard Goldschmidt’s integration of development, evolution, and Genetics1. Am Zool 40:738–747. Available from: https://doi.org/10.1093/icb/40.5.738.

  42. Dietrich MR. Richard Goldschmidt: Hopeful monsters and other “heresies.”. Nat Rev Genet. 2003.

  43. Dietrich MR. Reinventing Richard Goldschmidt: reputation, memory, and biography. J Hist Biol. 2011;44:693–712.

    Article  PubMed  Google Scholar 

  44. Akam M. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol. 1998;42:445–51.

    CAS  PubMed  Google Scholar 

  45. Dietrich MR. Richard Goldschmidt’s “heresies” and the evolutionary synthesis. J Hist Biol. 1995;28:431–61.

    Article  CAS  PubMed  Google Scholar 

  46. Mayr E. Goldschmidt and the evolutionary synthesis: a response. J Hist Biol. 1997;30:31–3.

    Article  Google Scholar 

  47. Theißen G. The proper place of hopeful monsters in evolutionary biology. Theory Biosci. 2006;124:349–69.

    Article  PubMed  Google Scholar 

  48. Theißen G. Saltational evolution: hopeful monsters are here to stay. Theory Biosci. 2009;128:43–51.

    Article  PubMed  Google Scholar 

  49. Harrison RG. Return of the hopeful monster? Paleobiology. 1982;8:459–63.

    Article  Google Scholar 

  50. Templeton AR. Why read Goldschmidt? Paleobiology. 1982;8:474–81.

    Article  Google Scholar 

  51. Wallace B. Reflections on the still-“hopeful monster”. Q Rev Biol. 1985;60:31–42.

    Article  Google Scholar 

  52. Geoffrey Saint-Hilaire I. 1836. Histoire générale et particulière des anomalies de l’organisation chez l’homme et les animaux. Traié de Tératologie. Vols. 1-3 & Atlas with Plates.

  53. Gould GM, Pyle WL. Anomalies and curiosities of medicine. Philadelphia: W. B Saunders; 1898.

    Google Scholar 

  54. Hirst BC, Piersol GA. Human monstrosities, vol. 1-4. Philadelphia: Lea Brothers & Co.; 1891.

    Google Scholar 

  55. Paré A. 1573. Des monstres et prodiges.

  56. Thompson CJS. The mystery and lore of monsters: with accounts of some giants, dwarfs and prodigies. London: Williams & Northgate Ltd.; 1930.

    Book  Google Scholar 

  57. Alberch P. The logic of monsters: evidence for internal constraint in development and evolution. Geobios. 1989;22:21–57 Available from: http://www.sciencedirect.com/science/article/pii/S0016699589800063.

    Article  Google Scholar 

  58. Carballo GB, Honorato JR, De Lopes GPF, Spohr TCLDSE. A highlight on sonic hedgehog pathway. Cell Commun Signal. 2018;16:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Frazzetta TH. From hopeful monsters to bolyoerine snakes. Am Nat. 1970;104:55–71.

    Article  Google Scholar 

  60. Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 2006;313:101 LP–104 Available from: http://science.sciencemag.org/content/313/5783/101.abstract.

    Article  CAS  Google Scholar 

  61. Kaji T, Anker A, Wirkner CS, Palmer AR. 2018. Parallel saltational evolution of ultrafast movements in snapping shrimp claws. Curr Biol 28:106-113.e4. Available from: https://doi.org/10.1016/j.cub.2017.11.044.

  62. Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, Schluter D, Kingsley DM. 2004. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature [Internet] 428:717–723. Available from: https://doi.org/10.1038/nature02415.

  63. Voss SR, Shaffer HB. Adaptive evolution via a major gene effect: paedomorphosis in the Mexican axolotl. Proc Natl Acad Sci U S A. 1997;94:14185–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petit F, Sears KE, Ahituv N. Limb development: a paradigm of gene regulation. Nat Rev Genet. 2017.

  65. Tickle C, Towers M. Sonic hedgehog signaling in limb development. Front Cell Dev Biol. 2017.

  66. Wagner GP. 2014. Homology, genes, and evolutionary innovation.

  67. Zeller R, Lopez-Rios J, Zuniga A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet. 2009;10:845–58.

    Article  CAS  PubMed  Google Scholar 

  68. Diaz RE, Trainor PA. Hand/foot splitting and the “re-evolution” of mesopodial skeletal elements during the evolution and radiation of chameleons. BMC Evol Biol. 2015;15:184 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26382964.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Epstein CJ, Erickson RP, Wynshaw-Boris A, editors. Inborn errors of development the molecular basis of clinical disorders and morphogenesis. 2nd ed: Oxford University Press; 2008.

  70. Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development. 1993;117:409–29 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8330517.

    CAS  PubMed  Google Scholar 

  71. Le Douarin N, Kalcheim C. 1999. The neural crest. Available from: http://www.ncbi.nlm.nih.gov/books/NBK10065/

  72. Szabo-Rogers HL, Smithers LE, Yakob W, Liu KJ. New directions in craniofacial morphogenesis. Dev Biol. 2010;341:84–94.

    Article  CAS  PubMed  Google Scholar 

  73. Trainor PA ed. 2014. Neural crest cells: evolution, Development and Disease. Academic Press.

    Google Scholar 

  74. Ziermann JM, Diaz RE Jr, Diogo R, editors. Heads, jaws, and muscles: anatomical, functional, and developmental diversity in chordate evolution: Springer; 2019.

  75. Diaz RE, Shylo NA, Roellig D, Bronner M, Trainor PA. Filling in the phylogenetic gaps: induction, migration, and differentiation of neural crest cells in a squamate reptile, the veiled chameleon (Chamaeleo calyptratus). Dev Dyn. 2019.

  76. Schneider RA. Neural crest and the origin of species-specific pattern. Genesis. 2018;56:e23219.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Young NM, Hu D, Lainoff AJ, Smith FJ, Diaz R, Tucker AS, et al. Embryonic bauplans and the developmental origins of facial diversity and constraint. Development. 2014;141:1059 LP–1063 Available from: http://dev.biologists.org/content/141/5/1059.abstract.

    Article  CAS  Google Scholar 

  78. Hu D, Marcucio RS. Unique organization of the frontonasal ectodermal zone in birds and mammals. Dev Biol. 2009.

  79. Marcucio RS, Cordero DR, Hu D, Helms JA. Molecular interactions coordinating the development of the forebrain and face. Dev Biol. 2005;284:48–61.

    Article  CAS  PubMed  Google Scholar 

  80. Young NM, Chong HJ, Hu D, Hallgrímsson B, Marcucio RS. Quantitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape. Development. 2010;137:3405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abramyan J, Richman JM. Recent insights into the morphological diversity in the amniote primary and secondary palates. Dev Dyn. 2015;244:1457–68 Available from: https://www.ncbi.nlm.nih.gov/pubmed/26293818.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Abramyan J, Leung KJM, Richman JM. Divergent palate morphology in turtles and birds correlates with differences in proliferation and BMP2 expression during embryonic development. J Exp Zool B Mol Dev Evol. 2014.

  83. Abramyan J, Thivichon-Prince B, Richman JM. Diversity in primary palate ontogeny of amniotes revealed with 3D imaging. J Anat. 2015;226:420–33.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hall RK. Solitary median maxillary central incisor (SMMCI) syndrome. Orphanet J Rare Dis. 2006.

  85. Brugmann SA, Allen NC, James AW, Mekonnen Z, Madan E, Helms JA. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet. 2010;19:1577–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development. 1999;126:4873–84.

    CAS  PubMed  Google Scholar 

  87. Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, et al. Mutations in the human sonic hedgehog gene cause holoprosencephaly. Nat Genet. 1996;14:357–60.

    Article  CAS  PubMed  Google Scholar 

  88. Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet. 2019;138:917–36.

    Article  PubMed  Google Scholar 

  89. Ananjeva NB, Orlov N. Egg teeth of squamate reptiles and their phylogenetic significance. Biol Bull. 2013;40:600–5.

    Article  Google Scholar 

  90. Burbrink FT, Grazziotin FG, Pyron RA, Cundall D, Donnellan S, Irish F, et al. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Syst Biol. 2019.

  91. Pyron RA. 2017. Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). In: Systematic Biology.

  92. Fons JM, Gaete M, Zahradnicek O, Landova M, Bandali H, Khannoon ER, et al. Getting out of an egg: merging of tooth germs to create an egg tooth in the snake. Dev Dyn. 2020;249:199–208.

    Article  PubMed  Google Scholar 

  93. Hermyt M, Kaczmarek P, Kowalska M, Rupik W. Development of the egg tooth – the tool facilitating hatching of squamates: lessons from the grass snake Natrix natrix. Zool Anz. 2017;266:61–70.

    Article  Google Scholar 

  94. Kearney M. Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herpetol Monogr. 2003.

  95. Gans C, Montero R. 2008. An atlas of amphisbaenian skull anatomy. Biol Reptil Vol 21 Morphol I Skull Append Locomot Appar Lepidosauria.

  96. Ananjeva N. The skull structure of some arid asian agamids of Phrynocephalus genus (Agamidae, Sauria). Russ J Herpetol. 1998;5:29–35.

    Google Scholar 

  97. Richtsmeier JT, Flaherty K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol. 2013;125:469–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Richtsmeier JT, Aldridge K, DeLeon VB, Panchal J, Kane AA, Marsh JL, et al. Phenotypic integration of neurocranium and brain. J Exp Zool B Mol Dev Evol. 2006;306:360–78.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Siegenthaler JA, Pleasure SJ. We have got you “covered”: how the meninges control brain development. Curr Opin Genet Dev. 2011;21:249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gross JB, Hanken J. Review of fate-mapping studies of osteogenic cranial neural crest in vertebrates. Dev Biol. 2008;317:389–400.

    Article  CAS  PubMed  Google Scholar 

  101. Rice DP, Sharpe PT, editors. Craniofacial sutures: development, disease and treatment (Frontiers of Oral Biology), vol. 12: S. Karger Publishers; 2008.

  102. Zhao H, Feng J, Ho T-V, Grimes W, Urata M, Chai Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol. 2015;17:386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Esteve-Altava B, Rasskin-Gutman D. Evo-Devo insights from pathological networks: exploring craniosynostosis as a developmental mechanism for modularity and complexity in the human skull. J Anthropol Sci. 2015;93:103–17.

    PubMed  Google Scholar 

  104. Esteve-Altava B, Marugán-Lobón J, Botella H, Rasskin-Gutman D. 2013. Structural constraints in the evolution of the tetrapod skull complexity: Williston’s law revisited using network models. Evol Biol 40:209–219. Available from: https://doi.org/10.1007/s11692-012-9200-9

  105. Koyabu D, Maier W, Sánchez-Villagra MR. Paleontological and developmental evidence resolve the homology and dual embryonic origin of a mammalian skull bone, the interparietal. Proc Natl Acad Sci. 2012;109:14075–80 Available from: http://www.pnas.org/content/109/35/14075.abstract.

    Article  CAS  PubMed  Google Scholar 

  106. Sidor CA. Simplification as a trend in synapsid cranial evolution. Evolution. 2001;55:1419–42.

    Article  CAS  PubMed  Google Scholar 

  107. Nissim S. Development of the limbs. In: Epstein CJ, Erickson RP, Wynshaw-Boris A, editors. Inborn errors of development the molecular basis of clinical disorders of morphogenesis. 2nd ed: Oxford University Press; 2008. p. 182–202.

  108. Zuniga A. Next generation limb development and evolution: old questions, new perspectives. Development. 2015;142:3810–20.

    Article  CAS  PubMed  Google Scholar 

  109. Woltering JM, Duboule D. The origin of digits: expression patterns versus regulatory mechanisms. Dev Cell. 2010;18:526–32.

  110. Hernandez-Martinez R, Covarrubias L. Interdigital cell death function and regulation: new insights on an old programmed cell death model. Develop Growth Differ. 2011;53:245–58.

    Article  Google Scholar 

  111. Kaltcheva MM, Anderson MJ, Harfe BD, Lewandoski M. BMPs are direct triggers of interdigital programmed cell death. Dev Biol. 2016;411:266–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zuzarte-Luis V, Hurle JM. Programmed cell death in the embryonic vertebrate limb. Semin Cell Dev Biol. 2005;16:261–9.

    Article  CAS  PubMed  Google Scholar 

  113. Al-Qattan MM, Alkuraya FS. Cenani–Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am J Med Genet A. 2019.

  114. Hines EA, Verheyden JM, Lashua AJ, Larson SC, Branchfield K, Domyan ET, et al. Syndactyly in a novel Fras1rdf mutant results from interruption of signals for interdigital apoptosis. Dev Dyn. 2016;245:497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Malik S. Syndactyly: phenotypes, genetics and current classification. Eur J Hum Genet. 2012;20:817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stevenson RE, Hall JG, editors. Human malformations and related anomalies (Oxford Monographs On Medical Genetics). 3rd ed: Oxford University Press; 2016.

  117. Schmidt H-M, Lanz U. 2004. Surgical anatomy of the hand. Thieme-Verlag.

  118. Hockman D, Cretekos CJ, Mason MK, Behringer RR, Jacobs DS, Illing N. A second wave of <em>Sonic hedgehog</em> expression during the development of the bat limb. Proc Natl Acad Sci. 2008;105:16982 LP–16987 Available from: http://www.pnas.org/content/105/44/16982.abstract.

    Article  Google Scholar 

  119. Weatherbee SD, Behringer RR, Rasweiler JJ 4th, Niswander LA. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci U S A. 2006;103:15103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cooper KL, Sears KE, Uygur A, Maier J, Baczkowski K-S, Brosnahan M, et al. Patterning and post-patterning modes of evolutionary digit loss in mammals. Nature [Internet]. 2014;511:41–5 Available from: https://pubmed.ncbi.nlm.nih.gov/24990742.

    Article  CAS  Google Scholar 

  121. Merino R, Rodriguez-Leon J, Macias D, Gañan Y, Economides AN, Hurle JM. The BMP antagonist gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development. 1999;126:5515–22.

    CAS  PubMed  Google Scholar 

  122. Cooper LN, Sears KE, Armfield BA, Kala B, Hubler M, Thewissen JGM. 2018. Review and experimental evaluation of the embryonic development and evolutionary history of flipper development and hyperphalangy in dolphins (Cetacea: Mammalia). Genesis 56:e23076. Available from: https://doi.org/10.1002/dvg.23076.

  123. Umair M, Ahmad F, Bilal M, Abbas S. Syndactyly genes and classification: a mini review. J Biochem Clin Genet. 2018.

  124. Cordeiro IR, Kabashima K, Ochi H, Munakata K, Nishimori C, Laslo M et al Environmental oxygen exposure allows for the evolution of interdigital cell death in limb patterning. Dev Cell. 2019;50:155–66.

  125. Cohn MJ, Tickle C. 1999. Developmental basis of limblessness and axial patterning in snakes. Nature [Internet] 399:474–479. Available from: https://doi.org/10.1038/20944.

  126. Di-Poï N, Montoya-Burgos JI, Miller H, Pourquié O, Milinkovitch MC, Duboule D. Changes in Hox genes structure and function during the evolution of the squamate body plan. Nature. 2010;464:99–103.

    Article  PubMed  CAS  Google Scholar 

  127. Guerreiro I, Gitto S, Novoa A, Codourey J, Nguyen Huynh TH, Gonzalez F, Milinkovitch MC, Mallo M, Duboule D. 2016. Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan. Elife.

  128. Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, et al. Progressive loss of function in a limb enhancer during snake evolution. Cell. 2016;167:633–642.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Leal F, Cohn MJ. 2016. Loss and re-emergence of legs in snakes by modular evolution of sonic hedgehog and HOXD enhancers. Curr Biol 26:2966–2973. Available from: https://doi.org/10.1016/j.cub.2016.09.020.

  130. Woltering JM. From lizard to snake; behind the evolution of an extreme body plan. Curr Genomics. 2012;13:289–99 Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2029&volume=13&issue=4&spage=289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Woltering JM, Vonk FJ, Müller H, Bardine N, Tuduce IL, de Bakker MAG, et al. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev Biol. 2009.

  132. Head JJ, Polly PD. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature. 2015;520:86–9.

    Article  CAS  PubMed  Google Scholar 

  133. Aly I, Chapman JR, Oskouian RJ, Loukas M, Tubbs RS. Lumbar ribs: a comprehensive review. Childs Nerv Syst. 2016.

  134. Quinonez SC, Innis JW. Human HOX gene disorders. Mol Genet Metab. 2014;111:4–15.

    Article  CAS  PubMed  Google Scholar 

  135. Duellman WE, Trueb L. Biology of amphibians. Baltimore: Johns Hopkins University Press; 1994.

    Google Scholar 

  136. Blanco MJ, Misof BY, Wagner GP, Blanco MJ, Misof BY, Wagner GP. 1998. Heterochronic differences of Hoxa-11 expression in Xenopus fore- and hind limb development: evidence for lower limb identity of the anuran ankle bones. Dev Genes Evol 208:175–187. Available from: https://doi.org/10.1007/s004270050172.

Download references

Acknowledgments

The author would like to thank Alex Phucas and Rui Diogo for the invitation to submit an article to this issue and to my colleagues for the discussions on various topics related to content in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul E. Diaz Jr..

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evolutionary Developmental Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, R.E. Evo-Devo Path as a Bridge between Evolution, Morphological Disparity, and Medicine with Comments on “Hopeful Monsters” in the Age of Genomics. Curr Mol Bio Rep 6, 79–90 (2020). https://doi.org/10.1007/s40610-020-00131-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-020-00131-2

Keywords