Abstract
A vehicle formation control algorithm is presented to deal with the ineluctable uncertainty and guarantee the vehicle platoon Lyapunov stability (uniform boundedness, uniform ultimate boundedness, and string stability). The uncertainty here is nonlinear, possibly fast time-varying, and is assumed to be within the confines of a known set. Most important of all, the control parameters are optimized to achieve better performances. A Pareto optimal approach is employed to solve such an optimal problem. In the optimal procedure, the control parameters are considered as players and their corresponding value ranges are regarded as the decision sets. The cost function of any player includes three parts: the state cost portion, the time cost portion, and the control cost portion. The optimal parameters minimize the cost functions. The resulting vehicle formation control with optimal parameters impels the vehicle platoon both Lyapunov stability and low cost.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Petrov, P., Nashashibi, F.: Modeling and nonlinear adaptive control for autonomous vehicle overtaking. IEEE Trans. Intell. Transp. Syst. 15(4), 1643–1656 (2014)
Huang, J., Huang, Q., Deng, Y., Chen, Y.H.: Toward robust vehicle platooning with bounded spacing error. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 36(4), 562–572 (2017)
Huang, Z., Chu, D., Wu, C., He, Y.: Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Trans. Intell. Transp. Syst. 20(3), 959–974 (2019)
Levine, W.S., Athans, M.: On the optimal error regulation of a string of moving vehicles. IEEE Trans. Autom. Control 11(3), 355–361 (1966)
Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)
Stilwell, D.J., Bishop, B.E., Sylvester, C.A.: Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles. IEEE Trans. Syst. Man Cybern. B 35(4), 842–848 (2005)
Liu, P., Kurt, A., Ozguner, U.: Synthesis of a behavior-guided controller for lead vehicles in automated vehicle convoys. Mechatronics 50, 366–376 (2018)
Dong, L., Chen, Y., Qu, X.: Formation control strategy for nonholonomic intelligent vehicles based on virtual structure and consensus approach. Proc. Eng. 137, 415–424 (2016)
Sun, Z., Xia, Y.: Receding horizon tracking control of unicycle-type robots based on virtual structure: Receding horizon tracking control of unicycle-type robots. Int. J. Robust Nonlinear Control 26(17), 3900–3918 (2016)
Zhang, L., Sun, J., Yang, Q.: Distributed model-based event-triggered leader–follower consensus control for linear continuous-time multiagent systems. IEEE Trans. Syst. Man Cybern. 51, 6457–6465 (2020). https://doi.org/10.1109/TSMC.2019.2962735
Zhang, D., Shen, Y., Zhou, S.: Distributed secure platoon control of connected vehicles subject to dos attack: Theory and application. IEEE Trans. Syst. Man Cybern. 81, 1–10 (2020). https://doi.org/10.1109/TSMC.2020.2968606
Wang, P.K.C.: Navigation strategies for multiple autonomous mobile robots. J. Robot. Syst. 8(2), 177–195 (1991)
Fernandes, P., Nunes, U.: Multiplatooning leaders positioning and cooperative behavior algorithms of communicant automated vehicles for high traffic capacity. IEEE Trans. Intell. Transp. Syst. 16(3), 1172–1187 (2015)
Guo, J., Luo, Y., Li, K.: Adaptive coordinated leader–follower control of autonomous over-actuated electric vehicles. Trans. Inst. Meas. Control. 50(5), 1416–1423 (2014)
Li, S.E., Gao, F., Li, K., Wang, L.-Y., You, K., Cao, D.: Robust longitudinal control of multi-vehicle systems: A distributed H-infinity method. IEEE Trans. Intell. Transp. Syst. 19(9), 2779–2788 (2018)
Huang, Y., Shi, P., Wu, Z., Qian, J., Chambers, J.A.: Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking. IEEE Trans. Syst. Man Cybern. 49(10), 2082–2096 (2019)
Suzuki, H., Nakatsuji, T.: Dynamic estimation of headway distance in vehicle platoon system under unexpected car-following situations. Transp. Res. Proc. 6, 172–188 (2015)
Liu, J., Cai, B.G., Wang, J.: Cooperative localization of connected vehicles: Integrating GNSS with DSRC using a robust cubature Kalman filter. IEEE Trans. Intell. Transp. Syst. 18(8), 2111–2125 (2017)
Kolhe, J.P., Shaheed, M., Chandar, T.S., Talole, S.E.: Robust control of robot manipulators based on uncertainty and disturbance estimation. Int. J. Robust Nonlinear Control 23(1), 104–122 (2013)
Kalman, R.E.: Randomness reexamined. MIC: Model. Identif. Control 15(3), 141–151 (1994)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Tong, S., Li, Y.: Fuzzy adaptive control design strategy of nonlinear switched large-scale systems. IEEE Trans. Syst. Man Cybern. 48(12), 2209–2218 (2018)
Latrech, C., Chaibet, A., Boukhnifer, M., Glaser, S.: Integrated longitudinal and lateral networked control system design for vehicle platooning. Sensors 18(9), 1 (2018)
Xiao, S., Dong, J.: Distributed adaptive fuzzy fault-tolerant containment control for heterogeneous nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. 93, 1–12 (2020). https://doi.org/10.1109/TSMC.2020.3002944
Liang, B., Zheng, S., Ahn, C.K.: Adaptive fuzzy control for fractional-order interconnected systems with unknown control directions. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3031694
Hao, S., Xue, H., Pan, Y.: Adaptive fuzzy dual-performance fault-tolerant control for interconnected nonlinear systems. Int. J. Adapt. Control Signal Process. (2021). https://doi.org/10.1002/acs.3284
Cui, Y., Liu, X., Deng, X.: Composite adaptive fuzzy decentralized tracking control for pure-feedback interconnected large-scale nonlinear systems. Neural Comput. Appl. 33, 8735–8751 (2021)
Chen, Y.H.: A new approach to the control design of fuzzy dynamical systems. J. Dyn. Syst. Meas. Control 133(6), 061019-1-061019–9 (2011)
Yu, R., Chen, Y.H., Han, B., Zhao, H.: A hierarchical control design framework for fuzzy mechanical systems with high-order uncertainty bound. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2965913
Dong, F., Zhao, X., Han, J., Chen, Y.H.: An optimal fuzzy adaptive control for uncertain flexible joint manipulator based on D-operation. IET Control Theory Appl. 12(9), 1286–1298 (2018)
Xu, J., Du, Y., Chen, Y.H., Guo, H.: Optimal robust control design for constrained uncertain systems: A fuzzy-set theoretic approach. IEEE Trans. Fuzzy Syst. 26(6), 3494–3505 (2018)
Zhao, X., Chen, Y.H., Dong, F., Zhao, H.: Controlling uncertain swarm mechanical systems: A \(\beta \)-measure based approach. IEEE Trans. Fuzzy Syst. 27(6), 1272–1285 (2019)
Xu, J., Du, Y., Chen, Y.H., Guo, H.: Bivariate optimization for control design of interconnected uncertain nonlinear systems: A fuzzy set-theoretic approach. Int. J. Fuzzy Syst. 20(6), 1715–1729 (2018)
Xu, J., Fang, H., Zhou, T., Chen, Y.H., Guo, H., Zeng, F.: Optimal robust position control with input shaping for flexible solar array drive system: A fuzzy-set theoretic approach. IEEE Trans. Fuzzy Syst. 27(9), 1807–1817 (2019)
Yin, H., Chen, Y.H., Yu, D., Lu, H.: Nash-game-oriented optimal design in controlling fuzzy dynamical systems. IEEE Trans. Fuzzy Syst. 27(8), 1659–1673 (2019)
Yin, H., Chen, Y.H., Yu, D.: Fuzzy dynamical system approach for a dual-parameter hybrid-order robust control design. Fuzzy Sets Syst. 392, 136–153 (2020)
Yin, H., Chen, Y.H., Yu, D.: Rendering optimal design in controlling fuzzy dynamical systems: A cooperative game approach. IEEE Trans. Ind. Inf. 15(8), 4430–4441 (2019)
Zhao, X., Chen, Y.H., Zhao, H.: Control design based on dead-zone and leakage adaptive laws for artificial swarm mechanical systems. Int. J. Control 90(5), 1077–1089 (2016)
Zhao, X., Chen, Y.H., Han, Z.: Robust approximate constraint-following control for autonomous vehicle platoon systems. Asian J. Control 20(4), 1611–1623 (2018)
Vincent, T., Leitmann, G.: Control-space properties of cooperative games. IEEE Trans. Fuzzy Syst. 6(2), 91–113 (1970)
Leitmann, G., Rocklin, S., Vincent, T.: A note on control space properties of cooperative games. J. Optim. Theory Appl. 9(6), 379–390 (1972)
Wang, K., Ouyang, Z., Krishnan, R., Shu, L., He, L.: A game theory-based energy management system using price elasticity for smart grids. IEEE Trans. Ind. Inf. 11(6), 1607–1616 (2015)
Li, C., Chen, Y. H., Zhao, H., Sun, H.: Stackelberg game theory-based optimization of high-order robust control for fuzzy dynamical systems. IEEE Trans. Syst. Man Cybern. (2020) https://doi.org/10.1109/TSMC.2020.3018139.
Subramanian, V., Burks, T.F., Arroyo, A.A.: Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation. Comput. Electron. Agric. 53(2), 130–143 (2006)
Kang, J., Hindiyeh, R.Y., Moon, S.W., Gerdes, J.C., Yi, K.: Design and testing of a controller for autonomous vehicle path tracking using GPS/INS sensors. J. Aerosp. Eng. 41(2), 2093–2098 (2008)
Wang, H., Wang, B., Liu, B., Meng, X., Yang, G.: Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Robot. Auton. Syst. 88, 71–78 (2016)
Chen, Y.H.: Artificial swarm system: Boundedness, convergence, and control. J. Aerosp. Eng. 21(4), 288–293 (2008)
Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2012)
Bajodah, A.H., Hodges, D.H., Chen, Y.H.: Inverse dynamics of servo-constraints based on the generalized inverse. Nonlinear Dyn. 39(1), 179–196 (2005)
Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control Dyn. 37(5), 1611–1624 (2014)
Udwadia, F.E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81(3), S30–S31 (2014)
Yu, R., Zhao, H., Zhen, S., Huang, K., Chen, X., Sun, H., Zhang, K.: A novel trajectory tracking control of AGY based on Udwadia–Kalaba approach. IEEE/CAA J. Automatica Sinica 99, 1–13 (2016)
Corless, M.J., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)
Swaroop, D., Hedrick, J.K.: String stability of interconnected systems. IEEE Trans. Automat. Control 41(3), 1806–1810 (1996)
Chen, Y.H.: Performance analysis of controlled uncertain systems. Dyn. Control 6(2), 131–142 (1996)
Acknowledgements
This research is supported by National Natural Science Foundation of China [Grant No. 51905140], Fundamental Research Funds for Chinese Central Universities (Grant No. PA2020GDSK0090, JZ2020YYPY0107), and China Fundamental Research Funds for Chinese Central Universities (Grant No. 300102259306).
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Membership function: A function that the values assigned to the elements of the universal set fall within a specified range and indicate the membership grade of these elements in the set in question is called membership function.
\(\alpha \)-cut and strong \(\alpha \)-cut: For a given fuzzy set \(\Omega \) defined on X and any number \(\alpha \in [0,1]\), the \(\alpha \)-cut of fuzzy set \(\Omega \) is defined as \( ^{\alpha }\Omega =\{x \mid \mu _{\Omega }(x)\ge \alpha \}\), the strong \(\alpha \)-cut of fuzzy set \(\Omega \) is defined as \( ^{\alpha +}{\Omega } =\{x \mid \mu _{\Omega }(x)> \alpha \}\).
Fuzzy number: To qualify as a fuzzy number, a fuzzy set \(\Omega \) must possess the following properties: (i) \(\Omega \) is a normal fuzzy set; (ii) \(\Omega \) is convex; (iii) the support of \(\Omega \) must be bounded; (iv) for each \(\alpha \in (0, 1]\), \( ^{\alpha }{\Omega } \) is a closed interval in \(\mathbf{R}\).
Arithmetic Operations: Let \(\Omega _1\), \(\Omega _2\) denote two fuzzy numbers, and \( *^{\alpha }{\Omega }{_1}=[a_1, b_1]\), \( ^{\alpha }{\Omega }{_2}=[a_2, b_2]\), \(a_1<b_1\), \(a_2<b_2\). Then, we have the following operations:
D-operation For a fuzzy set \({\mathcal {A}}=\{\upsilon , \mu _{N}(\upsilon ) \mid \upsilon \in {A}\}\) and any function \(f(\upsilon ): A\rightarrow {\mathbf{R}}\), the D-operation of \(f(\upsilon )\) is defined as
Rights and permissions
About this article
Cite this article
Zhao, X., Chen, YH., Dong, F. et al. A Leader–Follower Sequential Game Approach to Optimizing Parameters for Intelligent Vehicle Formation Control. Int. J. Fuzzy Syst. 24, 1390–1405 (2022). https://doi.org/10.1007/s40815-021-01196-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-021-01196-6