Skip to main content

Advertisement

Log in

New Linguistic Z-Number Petri Nets for Knowledge Acquisition and Representation Under Large Group Environment

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, we develop a new model named linguistic Z-number Petri nets for knowledge acquisition and representation in the large group environment. First, the linguistic Z-number production rules are introduced for knowledge representation, where truth degrees, threshold values, and certainty factors are described by linguistic Z-numbers. Subsequently, a knowledge acquisition approach is put forward to obtain the knowledge parameters of linguistic Z-number Petri nets based on a large group of experts. To reduce the complexity of knowledge reasoning, a simplification method is proposed to simplify the structure of linguistic Z-number Petri nets. Finally, a real case of chemical security risk assessment is provided to demonstrate the practicability and effectiveness of the proposed linguistic Z-number Petri net model. The results show that risk level of the given chemical plant is high and efficient actions should be taken to identify threat drivers and reduce security risk. Moreover, through a sensitivity analysis and a comparative analysis, it is concluded that the proposed linguistic Z-number Petri nets can represent experts’ complex and uncertain cognitive information comprehensively and acquire more precise and reasonable knowledge from domain experts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yeung, D.S., Ysang, E.C.C.: A multilevel weighted fuzzy reasoning algorithm for expert systems. IEEE Trans. Syst. Man Cybern. A Syst. Humans 28(2), 149–158 (1998)

    Article  Google Scholar 

  2. Wu, J., Lind, M., Zhang, X., Pardhasaradhi, K., Pathi, S.K., Myllerup, C.M.: Knowledge acquisition and representation for intelligent operation support in offshore fields. Process Saf. Environ. Prot. 155, 415–443 (2021)

    Article  Google Scholar 

  3. Liang, J.S.: A knowledge with ontology representation for product life cycle to support eco-design activities. J. Eng. Design Technol. (2021). https://doi.org/10.1108/JEDT-05-2021-0265

    Article  Google Scholar 

  4. Jain, N.K., Bharadwaj, K.K., Norian, M.: Extended hierarchical censored production rules (EHCPRs) system: an approach toward generalized knowledge representation. J. Intell. Syst. 9(3–4), 259–295 (1999)

    Google Scholar 

  5. Zhang, Q., Bu, X., Zhang, M., Zhang, Z., Hu, J.: Dynamic uncertain causality graph for computer-aided general clinical diagnoses with nasal obstruction as an illustration. Artif. Intell. Rev. 54(1), 27–61 (2021)

    Article  Google Scholar 

  6. Lin, J., Zhao, Y., Huang, W., Liu, C., Pu, H.: Domain knowledge graph-based research progress of knowledge representation. Neural Comput. Appl. 33(2), 681–690 (2021)

    Article  Google Scholar 

  7. Chen, S.M., Ke, J.S., Chang, J.F.: Knowledge representation using fuzzy Petri nets. IEEE Trans. Knowl. Data Eng. 2(3), 311–319 (1990)

    Article  Google Scholar 

  8. Liu, H.C., Liu, L., Lin, Q.L., Liu, N.: Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets. IEEE Trans. Cybern. 43(3), 1059–1072 (2013)

    Article  Google Scholar 

  9. Yue, W., Liu, X., Li, S., Gui, W., Xie, Y.: Knowledge representation and reasoning with industrial application using interval-valued intuitionistic fuzzy Petri nets and extended TOPSIS. Int. J. Mach. Learn. Cybern. 12(4), 987–1013 (2021)

    Article  Google Scholar 

  10. Yuan, C., Liao, Y., Kong, L., Xiao, H.: Fault diagnosis method of distribution network based on time sequence hierarchical fuzzy petri nets. Electric Power Syst. Res. 191, 106870 (2021)

    Article  Google Scholar 

  11. Yang, H., Feng, Y.: A Pythagorean fuzzy Petri net based security assessment model for civil aviation airport security inspection information system. Int. J. Intell. Syst. 36(5), 2122–2143 (2021)

    Article  Google Scholar 

  12. Liu, F., Sun, W., Heiner, M., Gilbert, D.: Hybrid modelling of biological systems using fuzzy continuous Petri nets. Brief. Bioinform. 22(1), 438–450 (2021)

    Article  Google Scholar 

  13. Yue, W., Gui, W., Xie, Y.: Experiential knowledge representation and reasoning based on linguistic Petri nets with application to aluminum electrolysis cell condition identification. Inf. Sci. 529, 141–165 (2020)

    Article  MathSciNet  Google Scholar 

  14. Li, L., Xie, Y., Cen, L., Zeng, Z.: A novel cause analysis approach of grey reasoning Petri net based on matrix operations. Appl. Intell. 52(1), 1–18 (2021)

    Article  Google Scholar 

  15. Jiang, S., Shi, H., Lin, W., Liu, H.C.: A large group linguistic Z-DEMATEL approach for identifying key performance indicators in hospital performance management. Appl. Soft Comput. 86, 105900 (2020)

    Article  Google Scholar 

  16. Liu, H.C., You, J.X., You, X.Y., Su, Q.: Linguistic reasoning Petri nets for knowledge representation and reasoning. IEEE Trans. Syst. Man Cybern. Syst. 46(4), 499–511 (2016)

    Article  Google Scholar 

  17. Wang, J.Q., Cao, Y.X., Zhang, H.Y.: Multi-criteria decision-making method based on distance measure and Choquet integral for linguistic Z-numbers. Cogn. Comput. 9(6), 827–842 (2017)

    Article  Google Scholar 

  18. Zadeh, L.A.: A note on Z-numbers. Inform. Sci. 181(14), 2923–2932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jia, Q., Hu, J., Safwat, E., Kamel, A.: Polar coordinate system to solve an uncertain linguistic Z-number and its application in multicriteria group decision-making. Eng. Appl. Artif. Intell. 105, 104437 (2021)

    Article  Google Scholar 

  20. Liu, P., Liu, W.: Maclaurin symmetric means for linguistic Z-numbers and their application to multiple-attribute decision-making. Scientia Iranica 28(5E), 2910–2925 (2021)

    Google Scholar 

  21. Liu, H.C., Chen, X.Q., You, J.X., Li, Z.: A new integrated approach for risk evaluation and classification with dynamic expert weights. IEEE Trans. Reliab. 70(1), 163–174 (2021)

    Article  Google Scholar 

  22. Teng, F., Wang, L., Rong, L., Liu, P.: Probabilistic linguistic Z number decision-making method for multiple attribute group decision-making problems with heterogeneous relationships and incomplete probability information. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-021-01161-3

  23. Duan, C.Y., Liu, H.C., Zhang, L.J., Shi, H.: An extended alternative queuing method with linguistic Z-numbers and its application for green supplier selection and order allocation. Int. J. Fuzzy Syst. 21(8), 2510–2523 (2019)

    Article  Google Scholar 

  24. Liu, Q., Chen, J., Wu, Y., Yang, K.: Linguistic Z-numbers and cloud model weighted ranking technology and its application in concept evaluation of information axiom. J. Supercomput. (2021). https://doi.org/10.1007/s11227-021-04106-7

    Article  Google Scholar 

  25. Huang, J., Xu, D.H., Liu, H.C., Song, M.S.: A new model for failure mode and effect analysis integrating linguistic Z-numbers and projection method. IEEE Trans. Fuzzy Syst. 29(3), 530–538 (2021)

    Article  Google Scholar 

  26. Huang, W., Zhang, Y., Yin, D., Zuo, B., Xu, M., Zhang, R.: Using improved group 2 and linguistic Z-numbers combined approach to analyze the causes of railway passenger train derailment accident. Inf. Sci. 576, 694–707 (2021)

    Article  MathSciNet  Google Scholar 

  27. Mao, L.X., Liu, R., Mou, X., Liu, H.C.: New approach for quality function deployment using linguistic Z-numbers and EDAS method. Informatica 32(3), 565–582 (2021)

    Article  MathSciNet  Google Scholar 

  28. Li, H., You, J.X., Liu, H.C., Tian, G.: Acquiring and sharing tacit knowledge based on interval 2-tuple linguistic assessments and extended fuzzy Petri nets. Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 26(1), 43–65 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, X.G., Shi, H., Xu, D.H., Liu, H.C.: Picture fuzzy Petri nets for knowledge representation and acquisition in considering conflicting opinions. Appl. Sci. 9(5), 983 (2019)

    Article  Google Scholar 

  30. Xu, X.G., Xiong, Y., Xu, D.H., Liu, H.C.: Bipolar fuzzy Petri nets for knowledge representation and acquisition considering non-cooperative behaviors. Int. J. Mach. Learn. Cybern. 11, 2297–2311 (2020)

    Article  Google Scholar 

  31. Liu, H.C., Xu, D.H., Duan, C.Y., Xiong, Y.: Pythagorean fuzzy Petri nets for knowledge representation and reasoning in large group context. IEEE Trans. Syst. Man Cybern. Syst. 51(8), 5261–5271 (2021)

    Article  Google Scholar 

  32. Liu, H.C., Luan, X., Lin, W., Xiong, Y.: Grey reasoning Petri nets for large group knowledge representation and reasoning. IEEE Trans. Fuzzy Syst. 28(12), 3315–3329 (2020)

    Article  Google Scholar 

  33. Rodríguez, R.M., Labella, Á., Nuñez-Cacho, P., Molina-Moreno, V., Martínez, L.: A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement. Technol. Forecast. Soc. Chang. 175, 121391 (2022)

    Article  Google Scholar 

  34. Liao, H., Wu, Z., Tang, M., Wan, Z.: An interactive consensus reaching model with updated weights of clusters in large-scale group decision making. Eng. Appl. Artif. Intell. 107, 104532 (2022)

    Article  Google Scholar 

  35. Looney, C.G.: Fuzzy Petri nets for rule-based decision-making. IEEE Trans. Syst. Man Cybern. 18(1), 178–183 (1988)

    Article  Google Scholar 

  36. Liu, H.C., Xue, L., Li, Z.W., Wu, J.: Linguistic Petri nets based on cloud model theory for knowledge representation and reasoning. IEEE Trans. Knowl. Data Eng. 30(4), 717–728 (2018)

    Article  Google Scholar 

  37. Yeung, D.S., Tsang, E.C.C.: Weighted fuzzy production rules. Fuzzy Sets Syst. 88(3), 299–313 (1997)

    Article  MathSciNet  Google Scholar 

  38. Liu, H.C., You, J.X., Li, Z.W., Tian, G.: Fuzzy Petri nets for knowledge representation and reasoning: a literature review. Eng. Appl. Artif. Intell. 60, 45–56 (2017)

    Article  Google Scholar 

  39. Zhou, J., Reniers, G., Zhang, L.: A weighted fuzzy Petri-net based approach for security risk assessment in the chemical industry. Chem. Eng. Sci. 174(Supplement C), 136–145 (2017)

    Article  Google Scholar 

  40. Liu, H.C., You, J.X., You, X.Y., Su, Q.: Fuzzy Petri nets using intuitionistic fuzzy sets and ordered weighted averaging operators. IEEE Trans. Cybern. 46(8), 1839–1850 (2016)

    Article  Google Scholar 

  41. Wang, W.M., Peng, X., Zhu, G.N., Hu, J., Peng, Y.H.: Dynamic representation of fuzzy knowledge based on fuzzy Petri net and genetic-particle swarm optimization. Expert Syst. Appl. 41(4), 1369–1376 (2014)

    Article  Google Scholar 

  42. Suraj, Z.: A new class of fuzzy Petri nets for knowledge representation and reasoning. Fund. Inform. 128(1), 193–207 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Chiachío, M., Chiachío, J., Prescott, D., Andrews, J.: A new paradigm for uncertain knowledge representation by Plausible Petri nets. Inf. Sci. 453, 323–345 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, C., Tian, G., Fathollahi-Fard, A.M., Wang, W., Wu, P., Li, Z.: Interval-valued intuitionistic uncertain linguistic cloud Petri net and its application to risk assessment for subway fire accident. IEEE Trans. Autom. Sci. Eng. 19(1), 163–177 (2022)

    Article  Google Scholar 

  45. Yue, W., Gui, W., Chen, X., Zeng, Z., Xie, Y.: Knowledge representation and reasoning using self-learning interval type-2 fuzzy Petri nets and extended TOPSIS. Int. J. Mach. Learn. Cybern. 10(12), 3499–3520 (2019)

    Article  Google Scholar 

  46. Li, X.Y., Xiong, Y., Duan, C.Y., Liu, H.C.: Failure mode and effect analysis using interval type-2 fuzzy sets and fuzzy Petri nets. J. Intell. Fuzzy Syst. 37(1), 693–709 (2019)

    Article  Google Scholar 

  47. Shi, H., Wang, L., Li, X.Y., Liu, H.C.: A novel method for failure mode and effects analysis using fuzzy evidential reasoning and fuzzy Petri nets. J. Ambient. Intell. Humaniz. Comput. 11(6), 2381–2395 (2020)

    Article  Google Scholar 

  48. Amin, M., Shebl, D.: Reasoning dynamic fuzzy systems based on adaptive fuzzy higher order Petri nets. Inf. Sci. 286, 161–172 (2014)

    Article  MATH  Google Scholar 

  49. Li, W., He, M., Sun, Y., Cao, Q.: A novel layered fuzzy Petri nets modelling and reasoning method for process equipment failure risk assessment. J. Loss Prevent. Process Ind. 62, 103953 (2019)

    Article  Google Scholar 

  50. Zhou, R., Feng, J., Chen, Y., Chang, H., Zhou, Y.: Representation and reasoning of fuzzy knowledge under variable fuzzy criterion using extended fuzzy Petri nets. IEEE Trans. Fuzzy Syst. 28(12), 3376–3390 (2020)

    Article  Google Scholar 

  51. Ding, Z., Zhou, Y., Zhou, M.: Modeling self-adaptive software systems by fuzzy rules and Petri nets. IEEE Trans. Fuzzy Syst. 26(2), 967–984 (2018)

    Article  Google Scholar 

  52. Zhou, K.Q., Mo, L.P., Jin, J., Zain, A.M.: An equivalent generating algorithm to model fuzzy Petri net for knowledge-based system. J. Intell. Manuf. 30(4), 1831–1842 (2019)

    Article  Google Scholar 

  53. Zhou, K.Q., Zain, A.M., Mo, L.P.: A decomposition algorithm of fuzzy Petri net using an index function and incidence matrix. Expert Syst. Appl. 42(8), 3980–3990 (2015)

    Article  Google Scholar 

  54. Zhang, J.H., Xia, J.J., Garibaldi, J.M., Groumpos, P.P., Wang, R.B.: Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets. Comput. Methods Programs Biomed. 144, 147–163 (2017)

    Article  Google Scholar 

  55. Gupta, S., Kumawat, S., Singh, G.P.: Fuzzy Petri net representation of fuzzy production propositions of a rule based system. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds.) Advances in computing and data sciences, pp. 197–210. Springer, Singapore (2019)

    Chapter  Google Scholar 

  56. Sun, F., Zhang, W., Chen, J., Wu, H., Tan, C., Su, W.: Fused fuzzy Petri nets: a shared control method for brain-computer interface systems. IEEE Trans. Cognit. Develop. Syst. 11(2), 188–199 (2019)

    Article  Google Scholar 

  57. Majma, N., Babamir, S.M.: Model-based monitoring and adaptation of pacemaker behavior using hierarchical fuzzy colored Petri-nets. IEEE Trans. Syst. Man Cybern. Syst. 50(9), 3344–3357 (2020)

    Article  Google Scholar 

  58. Assaf, G., Heiner, M., Liu, F.: Coloured fuzzy Petri nets for modelling and analysing membrane systems. BioSystems 212, 104592 (2022)

    Article  Google Scholar 

  59. Yang, B., Li, H.: A novel dynamic timed fuzzy Petri nets modeling method with applications to industrial processes. Expert Syst. Appl. 97, 276–289 (2018)

    Article  Google Scholar 

  60. Liu, H.C., Luan, X., Zhou, M.C., Xiong, Y.: A new linguistic Petri net for complex knowledge representation and reasoning. IEEE Trans. Knowl. Data Eng. 34(3), 1011–1020 (2020)

    Article  Google Scholar 

  61. Mou, X., Zhang, Q.Z., Liu, H.C., Zhao, J.: Knowledge representation and acquisition using R-numbers Petri nets considering conflict opinions. Expert. Syst. 38(3), e12660 (2021)

    Article  Google Scholar 

  62. Xu, Z.S.: An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision making with uncertain multiplicative linguistic preference relations. Decis. Support Syst. 41(2), 488–499 (2006)

    Article  Google Scholar 

  63. Peng, H.G., Wang, J.Q.: Hesitant uncertain linguistic Z-numbers and their application in multi-criteria group decision-making problems. Int. J. Fuzzy Syst. 19(5), 1300–1316 (2017)

    Article  Google Scholar 

  64. Krishna, K., Murty, M.N.: Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. B Cybern. 29(3), 433–439 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the respected editor and the anonymous referees for their insightful and constructive comments, which helped to improve the overall quality of the paper. This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 22120220035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Liu, HC., Wang, JH. et al. New Linguistic Z-Number Petri Nets for Knowledge Acquisition and Representation Under Large Group Environment. Int. J. Fuzzy Syst. 24, 3483–3500 (2022). https://doi.org/10.1007/s40815-022-01341-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01341-9

Keywords

Navigation