Abstract
The nuclear envelope (NE) not only shields the genetic material inside the nucleus, maintains the dynamic shapes of nucleus, and regulates nuclear exchange with cytosol, but also participates in DNA replication, damage repair and transcription regulation. The loss of NE integrity, as observed in various diseases, has been shown to cause genome instability as a result of genetic material leaking into the cytoplasm. An underestimated but critically important factor of genome integrity is the role of NE components that involve in DNA replication and damage repair. In this review, we summarize the triggers of NE loss and its cellular consequences by focusing on the interactions between NE components and DNA replication and repair factors. Studies on how NE mediates DNA replication and damage repair could shed light on the diagnosis and treatment of human diseases such as cancer and laminopathy.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- A-NHEJ:
-
Alternative non-homologous end joining
- ATM:
-
Ataxia-telangiectasia mutated protein
- ATR:
-
Ataxia telangiectasia and Rad3-related protein
- BAF:
-
Barrier-to-autointegration factor
- cGAS:
-
Cyclic GMP-AMP synthase
- ChIP:
-
Chromatin immunoprecipitation
- CHMP:
-
Charged multivesicular body protein
- DamID:
-
DNA adenine methyltransferase identification
- DNA:
-
Deoxyribonucleic acid
- DNA-PK:
-
DNA-dependent protein kinase
- DSBs:
-
Double-strand breaks
- ESCRT:
-
Endosomal sorting complexes required for transport
- ER:
-
Endoplasmic reticulum
- FANCD2:
-
Fanconi anemia group D2 protein
- HGPS:
-
Hutchinson-Gilford progeria syndrome
- HR:
-
Homologous recombination
- ICL:
-
Interstrand cross-links
- INM:
-
Inner nuclear membrane
- LADs:
-
Lamina-associated domains
- LEM:
-
Lap-Emerin-Man domain protein
- LINC:
-
Linker of nucleoskeleton and cytoskeleton
- NE:
-
Nuclear envelope
- NEBD:
-
Nuclear envelope breakdown
- NHEJ:
-
Non-homologous end joining
- NPC:
-
Nuclear pore complexes
- ONM:
-
Outer nuclear membrane
- PCNA:
-
Proliferating cell nuclear antigen
- RFC:
-
Replication factor complex
- RPA:
-
Replication protein A
- SSA:
-
Single-strand annealing
- STING:
-
Stimulator of interferon genes
- STUbL:
-
SUMO targeted ubiquitin ligase
- SUMO:
-
Small ubiquitin-like modifier
- TREX1:
-
Three-prime repair exonuclease 1
- UbcH7:
-
Ubiquitin-conjugating enzyme H7
- XPA:
-
Xeroderma pigmentosum group A
References
Aguilera, P., Whalen, J., Minguet, C., Churikov, D., Freudenreich, C., Simon, M. N., & Geli, V. (2020). The nuclear pore complex prevents sister chromatid recombination during replicative senescence. Nature Communications, 11, 160
Berk, J. M., Tifft, K. E., & Wilson, K. L. (2013). The nuclear envelope LEM-domain protein emerin. Nucleus, 4, 298–314
Brachner, A., & Foisner, R. (2011). Lamins reach out to novel functions in DNA damage repair Comment on: Redwood AB, et al. Cell Cycle, 2011(10), 2550–2561 (Cell Cycle 10, 3426–3427).
Briand, N., & Collas, P. (2018). Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus, 9, 216–226
Broers, J. L., Peeters, E. A., Kuijpers, H. J., Endert, J., Bouten, C. V., Oomens, C. W., Baaijens, F. P., & Ramaekers, F. C. (2004). Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Human Molecular Genetics, 13, 2567–2580
Brosh, R. M., Bellani, M., Liu, Y., & Seidman, M. M. (2017). Fanconi anemia: a DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Research Reviews, 33, 67–75
Brueckner, L., Zhao, P. A., van Schaik, T., Leemans, C., Sima, J., Peric-Hupkes, D., Gilbert, D. M., & van Steensel, B. (2020). Local rewiring of genome-nuclear lamina interactions by transcription. EMBO Journal, 39, e103159
Burke, B., & Stewart, C. L. (2006). The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annual Review of Genomics and Human Genetics, 7, 369–405
Butin-Israeli, V., Adam, S. A., & Goldman, R. D. (2013). Regulation of nucleotide excision repair by nuclear lamin B1. PLoS ONE, 8 (1), e69169. https://doi.org/10.1371/journal.pone.0069169
Butin-Israeli, V., Adam, S. A., Jain, N., Otte, G. L., Neems, D., Wiesmuller, L., Berger, S. L., & Goldman, R. D. (2015). Role of lamin B1 in chromatin instability. Molecular and Cellular Biology, 35, 884–898
Chang, H. H. Y., Pannunzio, N. R., Adachi, N., & Lieber, M. R. (2017). Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 18, 495–506
Chang, W., Worman, H. J., & Gundersen, G. G. (2015). Accessorizing and anchoring the LINC complex for multifunctionality. Journal of Cell Biology, 208, 11–22
Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., et al. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(920–935), e925
Churikov, D., Charifi, F., Eckert-Boulet, N., Silva, S., Simon, M. N., Lisby, M., & Geli, V. (2016). SUMO-dependent relocalization of eroded telomeres to nuclear pore complexes controls telomere recombination. Cell Reports, 15, 1242–1253
Cobb, A. M., Murray, T. V., Warren, D. T., Liu, Y., & Shanahan, C. M. (2016). Disruption of PCNA-lamins A/C interactions by prelamin A induces DNA replication fork stalling. Nucleus, 7, 498–511
Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., Stahl, P. D., & Hodzic, D. (2006). Coupling of the nucleus and cytoplasm: role of the LINC complex. Journal of Cell Biology, 172, 41–53
D’Angelo, M. A., & Hetzer, M. W. (2008). Structure, dynamics and function of nuclear pore complexes. Trends in Cell Biology, 18, 456–466
Datta, A., & Brosh, R. M. (2019). Holding All the cards-how Fanconi anemia proteins deal with replication stress and preserve genomic stability. Genes-Basel, 10, 170
de Noronha, C. M., Sherman, M. P., Lin, H. W., Cavrois, M. V., Moir, R. D., Goldman, R. D., & Greene, W. C. (2001). Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science, 294, 1105–1108
De Vos, W. H., Houben, F., Kamps, M., Malhas, A., Verheyen, F., Cox, J., Manders, E. M., Verstraeten, V. L., van Steensel, M. A., Marcelis, C. L., et al. (2011). Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Human Molecular Genetics, 20, 4175–4186
Denais, C., & Lammerding, J. (2014). Nuclear mechanics in cancer. Advances in Experimental Medicine and Biology, 773, 435–470
Denais, C. M., Gilbert, R. M., Isermann, P., McGregor, A. L., te Lindert, M., Weigelin, B., Davidson, P. M., Friedl, P., Wolf, K., & Lammerding, J. (2016). Nuclear envelope rupture and repair during cancer cell migration. Science, 352, 353–358
Di Micco, A., Frera, G., Lugrin, J., Jamilloux, Y., Hsu, E. T., Tardivel, A., De Gassart, A., Zaffalon, L., Bujisic, B., Siegert, S., et al. (2016). AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proceedings of the National academy of Sciences of the United States of America, 113, E4671–E4680
Dou, Z., Xu, C., Donahue, G., Shimi, T., Pan, J. A., Zhu, J., Ivanov, A., Capell, B. C., Drake, A. M., Shah, P. P., et al. (2015). Autophagy mediates degradation of nuclear lamina. Nature, 527, 105–109
Earle, A. J., Kirby, T. J., Fedorchak, G. R., Isermann, P., Patel, J., Iruvanti, S., Moore, S. A., Bonne, G., Wallrath, L. L., & Lammerding, J. (2020). Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. Nature Materials, 19, 464–473
Gaillard, H., Santos-Pereira, J. M., & Aguilera, A. (2019). The Nup84 complex coordinates the DNA damage response to warrant genome integrity. Nucleic Acids Research, 47, 4054–4067
Gibbs-Seymour, I., Markiewicz, E., Bekker-Jensen, S., Mailand, N., & Hutchison, C. J. (2015). Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell, 14, 162–169
Goldman, R. D., Shumaker, D. K., Erdos, M. R., Eriksson, M., Goldman, A. E., Gordon, L. B., Gruenbaum, Y., Khuon, S., Mendez, M., Varga, R., et al. (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proceedings of the National academy of Sciences of the United States of America, 101, 8963–8968
Gonzalo, S. (2014). DNA damage and lamins. Cancer Biology and the Nuclear Envelope: Recent Advances May Elucidate Past Paradoxes, 773, 377–399
Gonzalo, S., & Kreienkamp, R. (2015). DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Current Opinion in Cell Biology, 34, 75–83
Goodarzi, A. A., & Jeggo, P. A. (2013). The repair and signaling responses to DNA double-strand breaks. Advances in Genetics, 82, 1–45
Gruenbaum, Y., & Foisner, R. (2015). Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annual Review of Biochemistry, 84, 131–164
Gu, M., LaJoie, D., Chen, O. S., von Appen, A., Ladinsky, M. S., Redd, M. J., Nikolova, L., Bjorkman, P. J., Sundquist, W. I., Ullman, K. S., et al. (2017). LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proceedings of the National academy of Sciences of the United States of America, 114, E2166–E2175
Guey, B., Wischnewski, M., Decout, A., Makasheva, K., Kaynak, M., Sakar, M. S., Fierz, B., & Ablasser, A. (2020). BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science, 369, 823–828
Gundersen, G. G., & Worman, H. J. (2013). Nuclear positioning. Cell, 152, 1376–1389
Halfmann, C. T., Sears, R. M., Katiyar, A., Busselman, B. W., Aman, L. K., Zhang, Q., O’Bryan, C. S., Angelini, T. E., Lele, T. P., & Roux, K. J. (2019). Repair of nuclear ruptures requires barrier-to-autointegration factor. Journal of Cell Biology, 218, 2136–2149
Handoko, L., Xu, H., Li, G., Ngan, C. Y., Chew, E., Schnapp, M., Lee, C. W., Ye, C., Ping, J. L., Mulawadi, F., et al. (2011). CTCF-mediated functional chromatin interactome in pluripotent cells. Nature Genetics, 43, 630–638
Hatch, E., & Hetzer, M. (2014). Breaching the nuclear envelope in development and disease. Journal of Cell Biology, 205, 133–141
Her, J., & Bunting, S. F. (2018). How cells ensure correct repair of DNA double-strand breaks. Journal of Biological Chemistry, 293, 10502–10511
Hickey, C. M., Wilson, N. R., & Hochstrasser, M. (2012). Function and regulation of SUMO proteases. Nature Reviews Molecular Cell Biology, 13, 755–766
Hieda, M. (2017). Implications for diverse functions of the LINC complexes based on the structure. Cells, 6, 3. https://doi.org/10.3390/cells6010003
Hilton, B. A., Liu, J., Cartwright, B. M., Liu, Y., Breitman, M., Wang, Y., Jones, R., Tang, H., Rusinol, A., Musich, P. R., et al. (2017). Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. The FASEB Journal, 31, 3882–3893
Ho, R., & Hegele, R. A. (2019). Complex effects of laminopathy mutations on nuclear structure and function. Clinical Genetics, 95, 199–209
Horigome, C., Unozawa, E., Ooki, T., & Kobayashi, T. (2019). Ribosomal RNA gene repeats associate with the nuclear pore complex for maintenance after DNA damage. PLoS Genetics, 15, e1008103
Horn, H. F. (2014). LINC complex proteins in development and disease. Current Topics in Developmental Biology, 109, 287–321
Irianto, J., Pfeifer, C. R., Ivanovska, I. L., Swift, J., & Discher, D. E. (2016). Nuclear lamins in cancer. Cellular and Molecular Bioengineering, 9, 258–267
Ivanov, A., Pawlikowski, J., Manoharan, I., van Tuyn, J., Nelson, D. M., Rai, T. S., Shah, P. P., Hewitt, G., Korolchuk, V. I., Passos, J. F., et al. (2013). Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology, 202, 129–143
Jahed, Z., & Mofrad, M. R. (2019). The nucleus feels the force, LINCed in or not! Current Opinion in Cell Biology, 58, 114–119
Jimenez, A. J., Maiuri, P., Lafaurie-Janvore, J., Divoux, S., Piel, M., & Perez, F. (2014). ESCRT machinery is required for plasma membrane repair. Science, 343, 1247436
Kakarougkas, A., & Jeggo, P. A. (2014). DNA DSB repair pathway choice: an orchestrated handover mechanism. British Journal of Radiology, 87, 20130685
Kelley, J. B., Datta, S., Snow, C. J., Chatterjee, M., Ni, L., Spencer, A., Yang, C. S., Cubenas-Potts, C., Matunis, M. J., & Paschal, B. M. (2011). The defective nuclear lamina in Hutchinson-Gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Molecular and Cellular Biology, 31, 3378–3395
Kennedy, B. K., Barbie, D. A., Classon, M., Dyson, N., & Harlow, E. (2000). Nuclear organization of DNA replication in primary mammalian cells. Genes & Development, 14, 2855–2868
Kidiyoor, G. R., Li, Q., Bastianello, G., Bruhn, C., Giovannetti, I., Mohamood, A., Beznoussenko, G. V., Mironov, A., Raab, M., Piel, M., et al. (2020). ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nature Communications, 11, 4828
Kramarz, K., Schirmeisen, K., Boucherit, V., Ait Saada, A., Lovo, C., Palancade, B., Freudenreich, C., & Lambert, S. A. E. (2020). The nuclear pore primes recombination-dependent DNA synthesis at arrested forks by promoting SUMO removal. Nature Communications, 11, 5643
Kreienkamp, R., Graziano, S., Coll-Bonfill, N., Bedia-Diaz, G., Cybulla, E., Vindigni, A., Dorsett, D., Kubben, N., Batista, L. F. Z., & Gonzalo, S. (2018). A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin. Cell Reports, 22, 2006–2015
Kubben, N., Voncken, J. W., Demmers, J., Calis, C., van Almen, G., Pinto, Y., & Misteli, T. (2010). Identification of differential protein interactors of lamin A and progerin. Nucleus, 1, 513–525
Lawrence, K. S., Tapley, E. C., Cruz, V. E., Li, Q., Aung, K., Hart, K. C., Schwartz, T. U., Starr, D. A., & Engebrecht, J. (2016). LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. Journal of Cell Biology, 215, 801–821
Leemans, C., van der Zwalm, M. C. H., Brueckner, L., Comoglio, F., van Schaik, T., Pagie, L., van Arensbergen, J., & van Steensel, B. (2019). Promoter-intrinsic and local chromatin features determine gene repression in LADs. Cell, 177(852–864), e814
Lenain, C., Gusyatiner, O., Douma, S., van den Broek, B., & Peeper, D. S. (2015). Autophagy-mediated degradation of nuclear envelope proteins during oncogene-induced senescence. Carcinogenesis, 36, 1263–1274
Li, B. B. X., Chen, J. J., Chao, B., Zheng, Y. X., & Xiao, X. S. (2018). A Lamin-binding ligand inhibits homologous recombination repair of DNA double-strand breaks. ACS Central Sci, 4, 1201–1210
Lin, Q., Yu, B., Wang, X., Zhu, S., Zhao, G., Jia, M., Huang, F., Xu, N., Ren, H., Jiang, Q., et al. (2020). K6-linked SUMOylation of BAF regulates nuclear integrity and DNA replication in mammalian cells. Proceedings of the National academy of Sciences of the United States of America, 117, 10378–10387
Liu, N. A., Sun, J. Y., Kono, K., Horikoshi, Y., Ikura, T., Tong, X., Haraguchi, T., & Tashiro, S. (2015). Regulation of homologous recombinational repair by lamin B1 in radiation-induced DNA damage. Faseb Journal, 29, 2514–2525
Liu, S., Kwon, M., Mannino, M., Yang, N., Renda, F., Khodjakov, A., & Pellman, D. (2018). Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature, 561, 551–555
Lottersberger, F., Karssemeijer, R. A., Dimitrova, N., & de Lange, T. (2015). 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell, 163, 880–893
Lukasova, E., Rezacova, M., Bacikova, A., Sebejova, L., Vavrova, J., & Kozubek, S. (2019). Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Bio, 9, 870–890
Luxton, G. W., Gomes, E. R., Folker, E. S., Worman, H. J., & Gundersen, G. G. (2011). TAN lines: a novel nuclear envelope structure involved in nuclear positioning. Nucleus, 2, 173–181
Ma, H., Qian, W., Bambouskova, M., Collins, P.L., Porter, S.I., Byrum, A.K., Zhang, R., Artyomov, M., Oltz, E.M., Mosammaparast, N., et al. (2020). Barrier-to-autointegration factor 1 protects against a basal cGAS-STING response. mBio, 11, e00136–20. https://doi.org/10.1128/mBio.00136-20
Malhas, A. N., Lee, C. F., & Vaux, D. J. (2009). Lamin B1 controls oxidative stress responses via Oct-1. Journal of Cell Biology, 184, 45–55
Malhas, A. N., & Vaux, D. J. (2011). The nuclear envelope and its involvement in cellular stress responses. Biochemical Society Transactions, 39, 1795–1798
Misteli, T., & Soutoglou, E. (2009). The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Bio, 10, 243–254
Moir, R. D., Montag-Lowy, M., & Goldman, R. D. (1994). Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. Journal of Cell Biology, 125, 1201–1212
Moir, R. D., Spann, T. P., Herrmann, H., & Goldman, R. D. (2000). Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. Journal of Cell Biology, 149, 1179–1192
Nader, G., Aguera-Gonzalez, S., Routet, F., Gratia, M., Maurin, M., Cancila, V., Cadart, C., Gentili, M., Yamada, A., & Lodillinsky, C. (2020). Compromised nuclear envelope integrity drives tumor cell invasion. bioRxiv, preprint. https://doi.org/10.1101/2020.05.22.110122
Nagai, S., Dubrana, K., Tsai-Pflugfelder, M., Davidson, M. B., Roberts, T. M., Brown, G. W., Varela, E., Hediger, F., Gasser, S. M., & Krogan, N. J. (2008). Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science, 322, 597–602
Palancade, B., Liu, X., Garcia-Rubio, M., Aguilera, A., Zhao, X., & Doye, V. (2007). Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. Molecular Biology of the Cell, 18, 2912–2923
Pannunzio, N. R., Watanabe, G., & Lieber, M. R. (2018). Nonhomologous DNA end-joining for repair of DNA double-strand breaks. Journal of Biological Chemistry, 293, 10512–10523
Park, Y. E., Hayashi, Y. K., Bonne, G., Arimura, T., Noguchi, S., Nonaka, I., & Nishino, I. (2009). Autophagic degradation of nuclear components in mammalian cells. Autophagy, 5, 795–804
Penfield, L., Wysolmerski, B., Mauro, M., Farhadifar, R., Martinez, M. A., Biggs, R., Wu, H. Y., Broberg, C., Needleman, D., & Bahmanyar, S. (2018). Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Molecular Biology of the Cell, 29, 852–868
Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., & van Steensel, B. (2006). Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genetics, 38, 1005–1014
Porwal, M., Cohen, S., Snoussi, K., Popa-Wagner, R., Anderson, F., Dugot-Senant, N., Wodrich, H., Dinsart, C., Kleinschmidt, J. A., Pante, N., et al. (2013). Parvoviruses cause nuclear envelope breakdown by activating key enzymes of mitosis. PLoS Pathogens, 9, e1003671
Pozo, F. M., Tang, J. S., Bonk, K. W., Keri, R. A., Yao, X. S., & Zhang, Y. W. (2017). Regulatory cross-talk determines the cellular levels of 53BP1 protein, a critical factor in DNA repair. Journal of Biological Chemistry, 292, 5992–6003
Pujol, G., Soderqvist, H., & Radu, A. (2002). Age-associated reduction of nuclear protein import in human fibroblasts. Biochemical and Biophysical Research Communications, 294, 354–358
Raab, M., Gentili, M., de Belly, H., Thiam, H. R., Vargas, P., Jimenez, A. J., Lautenschlaeger, F., Voituriez, R., Lennon-Dumenil, A. M., Manel, N., et al. (2016). ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science, 352, 359–362
Rauschert, I., Aldunate, F., Preussner, J., Arocena-Sutz, M., Peraza, V., Looso, M., Benech, J. C., & Agrelo, R. (2017). Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells. PLoS ONE, 12 (4), e0175953. https://doi.org/10.1371/journal.pone.0175953
Redwood, A. B., Gonzalez-Suarez, I., & Gonzalo, S. (2011). Regulating the levels of key factors in cell cycle and DNA repair New pathways revealed by lamins. Cell Cycle, 10, 3652
Redwood, A. B., Perkins, S. M., Vanderwaal, R. P., Feng, Z. H., Biehl, K. J., Gonzalez-Suarez, I., Morgado-Palacin, L., Shi, W., Sage, J., Roti-Roti, J. L., et al. (2011). A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle, 10, 2549–2560
Robijns, J., Houthaeve, G., Braeckmans, K., & De Vos, W. H. (2018). Loss of nuclear envelope integrity in aging and disease. Int Rev Cel Mol Bio, 336, 205–222
Robijns, J., Molenberghs, F., Sieprath, T., Corne, T. D., Verschuuren, M., & De Vos, W. H. (2016). In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells. Science and Reports, 6, 30325
Robson, M. I., de Las Heras, J. I., Czapiewski, R., Sivakumar, A., Kerr, A. R. W., & Schirmer, E. C. (2017). Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments. Genome Research, 27, 1126–1138
Sakthivel, K. M., & Sehgal, P. (2016). A novel role of lamins from genetic disease to cancer biomarkers. Oncology Reviews, 10, 309
Sallmyr, A., & Tomkinson, A. E. (2018). Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. Journal of Biological Chemistry, 293, 10536–10546
Samwer, M., Schneider, M. W. G., Hoefler, R., Schmalhorst, P. S., Jude, J. G., Zuber, J., & Gerlich, D. W. (2017). DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell, 170(956–972), e923
Schwartz, T. U. (2016). The structure inventory of the nuclear pore complex. Journal of Molecular Biology, 428, 1986–2000
Shah, P., Hobson, C. M., Cheng, S., Colville, M. J., Paszek, M. J., Superfine, R., & Lammerding, J. (2021). Nuclear deformation causes DNA damage by increasing replication stress. Current Biology, 31(753–765), e756
Shimi, T., Pfleghaar, K., Kojima, S. I., Pack, C. G., Solovei, I., Goldman, A. E., Adam, S. A., Shumaker, D. K., Kinjo, M., Cremer, T., et al. (2008). The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Gene Dev, 22, 3409–3421
Shumaker, D. K., Solimando, L., Sengupta, K., Shimi, T., Adam, S. A., Grunwald, A., Strelkov, S. V., Aebi, U., Cardoso, M. C., & Goldman, R. D. (2008). The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. Journal of Cell Biology, 181, 269–280
Simon, D. N., & Wilson, K. L. (2011). The nucleoskeleton as a genome-associated dynamic “network of networks.” Nat Rev Mol Cell Bio, 12, 695–708
Singh, M., Hunt, C. R., Pandita, R. K., Kumar, R., Yang, C. R., Horikoshi, N., Bachoo, R., Serag, S., Story, M. D., Shay, J. W., et al. (2013). Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest. Molecular and Cellular Biology, 33, 1210–1222
Starr, D. A., & Fridolfsson, H. N. (2010). Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annual Review of Cell and Developmental Biology, 26, 421–444
Swartz, R. K., Rodriguez, E. C., & King, M. C. (2014). A role for nuclear envelope-bridging complexes in homology-directed repair. Molecular Biology of the Cell, 25, 2461–2471
Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P. C., Pinter, J., Pajerowski, J. D., Spinler, K. R., Shin, J. W., Tewari, M., et al. (2013). Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science, 341, 1240104
Tang, C. W., Maya-Mendoza, A., Martin, C., Zeng, K., Chen, S. B., Feret, D., Wilson, S. A., & Jackson, D. A. (2008). The integrity of a lamin-B1-dependent nucleoskeleton is a fundamental determinant of RNA synthesis in human cells. Journal of Cell Science, 121, 1014–1024
Tapley, E. C., & Starr, D. A. (2013). Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Current Opinion in Cell Biology, 25, 57–62
Techer, H., Koundrioukoff, S., Nicolas, A., & Debatisse, M. (2017). The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nature Reviews Genetics, 18, 535–550
Therizols, P., Fairhead, C., Cabal, G. G., Genovesio, A., Olivo-Marin, J.-C., Dujon, B., & Fabre, E. (2006). Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. The Journal of cell biology, 172, 189–199
Tsouroula, K., Furst, A., Rogier, M., Heyer, V., Maglott-Roth, A., Ferrand, A., Reina-San-Martin, B., & Soutoglou, E. (2016). Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Molecular Cell, 63, 293–305
van Schaik, T., Vos, M., Peric-Hupkes, D., Hn Celie, P., & van Steensel, B. (2020). Cell cycle dynamics of lamina-associated DNA. EMBO Reports, 21, e50636
van Steensel, B., & Belmont, A. S. (2017). Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell, 169, 780–791
von Appen, A., LaJoie, D., Johnson, I. E., Trnka, M. J., Pick, S. M., Burlingame, A. L., Ullman, K. S., & Frost, A. (2020). LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation. Nature, 582, 115–118
Vouzas, A.E., & Gilbert, D.M. (2021). Mammalian DNA replication timing. Cold Spring Harbor Perspectives Biology, a040162. https://doi.org/10.1101/cshperspect.a040162
Wilhelm, T., Said, M., & Naim, V. (2020). DNA replication stress and chromosomal instability: Dangerous liaisons. Genes (Basel), 11, 642
Wilson, K. L., & Foisner, R. (2010). Lamin-binding proteins. Cold Spring Harbor Perspectives in Biology, 2, a000554
Worman, H. J., Ostlund, C., & Wang, Y. X. (2010). Diseases of the nuclear envelope. Cold Spring Harbor Perspectives in Biology, 2, a000760
Wright, W. D., Shah, S. S., & Heyer, W. D. (2018). Homologous recombination and the repair of DNA double-strand breaks. Journal of Biological Chemistry, 293, 10524–10535
Yang, Z., Maciejowski, J., & de Lange, T. (2017). Nuclear envelope rupture is enhanced by loss of p53 or Rb. Molecular Cancer Research, 15, 1579–1586
Zeman, M. K., & Cimprich, K. A. (2014). Causes and consequences of replication stress. Nature Cell Biology, 16, 2–9
Zhang, C. Z., Spektor, A., Cornils, H., Francis, J. M., Jackson, E. K., Liu, S., Meyerson, M., & Pellman, D. (2015). Chromothripsis from DNA damage in micronuclei. Nature, 522, 179–184
Zwerger, M., Jaalouk, D. E., Lombardi, M. L., Isermann, P., Mauermann, M., Dialynas, G., Herrmann, H., Wallrath, L. L., & Lammerding, J. (2013). Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Human Molecular Genetics, 22, 2335–2349
Acknowledgements
We would like to thank the members of the Deng and Qin laboratories for helpful discussions. We apologize to those whose excellent work could not be cited directly in this review due to space limitations. This work is supported by the Guangdong Basic and Applied Basic Research Foundation (2020A1515110542, to L.D.), National Natural Science Foundation of China (31970752, to P.Q.), Science, Technology and Innovation Commission of Shenzhen Municipality (JSGG20191129110812, to P.Q.), and Shenzhen Bay Laboratory Open Fund (SZBL2020090501004, to P.Q.).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pu, W., Zhang, H., Qin, P. et al. Nuclear envelope integrity, DNA replication, damage repair and genome stability. GENOME INSTAB. DIS. 2, 102–114 (2021). https://doi.org/10.1007/s42764-021-00039-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42764-021-00039-w