Skip to main content

Advertisement

Log in

Automatic Breast Tumor Classification in Ultrasound Images Using Morphological Features and New Texture Analysis Based on Image Visibility Graph and Gabor Filters

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Lesion segmentation is a challenging task in computer-aided diagnosis (CAD) systems. In this paper, an automatic segmentation and diagnosis algorithm is proposed for Breast Ultrasound (BUS) images. Among imaging methods, ultrasound is used as an appropriate tool in the diagnosis of breast cancer owing to its advantages, including real-timeliness, low cost, no use of ionizing radiation, and high sensitivity in dense tissues. For this task, the main focus is to provide an efficient and automatic method to segment the region of interest (ROI), as well as to use morphological and texture-based features for diagnostic purposes. Two texture-based feature extraction methods, i.e. “estimation of Gabor filter coefficients by an autoregressive model” and “using statistical features in image visibility graph”, have been introduced after the automatic development of ROI. These features together with morphological features are classified by the Support Vector Machine (SVM) classifier to identify lesion type. After the selection of superior features by the recursive feature elimination algorithm, the proposed method is tested on a database with 163 images; the obtained results confirm the image segmentation ability and the feature separation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Cheng HD, Shan J, Ju W, Guo Y, Zhang L. Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 2010;43(1):299–317.

    Article  MATH  Google Scholar 

  2. Jalalian A, Mashohor SB, Mahmud HR, Saripan MIB, Ramli ARB, Karasfi B. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging. 2013;37(3):420–6.

    Article  Google Scholar 

  3. Telagarapu P, Poonguzhali S. Analysis of contour let texture feature extraction to classify the benign and malignant tumors from breast ultrasound images. Int J Eng Technol. 2014;6(1):239–305.

    Google Scholar 

  4. Su Y, Wang Y, Jiao J, Guo Y. Automatic detection and classification of breast tumors in ultrasonic images using texture and morphological features. Open Medi Inform J. 2011;5(1):26–37.

    Article  Google Scholar 

  5. Cooper AP. On the anatomy of the Breast (Vol. 1). Longman. 1984.

  6. Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med. 2012;367(21):1998–2005.

    Article  Google Scholar 

  7. Woo J. A short history of the development of ultrasound in obstetrics and gynecology. History Ultrasound Obst Gynecol. 2002;3:1–25.

    Google Scholar 

  8. Zhou Z, Wu W, Wu S, Tsui PH, Lin CC, Zhang L, Wang T. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts. Ultrason Imaging. 2014;36(4):256–76.

    Article  Google Scholar 

  9. Levman J, Warner E, Causer P, Martel A. Semi-automatic region-of-interest segmentation based computer-aided diagnosis of mass lesions from dynamic contrast-enhanced magnetic resonance imaging based breast cancer screening. J Digit Imaging. 2014;27(5):670–8.

    Article  Google Scholar 

  10. Huang YL, Chen, DR, LiuYK. Breast cancer diagnosis using image retrieval for different ultrasonic systems. In 2004 International Conference on Image Processing, 2004. ICIP'04. (Vol. 5, pp. 2957–2960). IEEE.

  11. Huang YL, Lin SH, Chen DR. Computer-aided diagnosis applied to 3-D US of solid breast nodules by using principal component analysis and image retrieval. In 2005 IEEE engineering in Medicine and Biology 27th Annual Conference (pp. 1802–1805). IEEE. 2006.

  12. Huang YL, Chen DR. Watershed segmentation for breast tumor in 2-D sonography. Ultrasound Med Biol. 2004;30(5):625–32.

    Article  Google Scholar 

  13. Parveen NRS. Segmenting tumors in ultrasound images. In 2008 International Conference on Computing, Communication and Networking (pp. 1–5). IEEE. 2008, December.

  14. Chang RF, Wu WJ, Moon WK, Chen WM, Lee W, Chen DR. Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model. Ultrasound Med Biol. 2003;29(11):1571–81.

    Article  Google Scholar 

  15. Galińska M,Ogiegło W, Wijata A, Juszczyk J, Czajkowska J. Breast cancer segmentation method in ultrasound images. In Conference on Innovations in Biomedical Engineering (pp. 23–31). Springer, Cham. 2017.

  16. Xie X, Shi F, Niu J, Tang X. Breast ultrasound image classification and segmentation using convolutional neural networks. In Pacific rim conference on multimedia (pp. 200–211). Springer, Cham. 2018.

  17. Liu L, Li K, Qin W, Wen T, Li L, Wu J, Gu J. Automated breast tumor detection and segmentation with a novel computational framework of whole ultrasound images. Med Biol Eng Compu. 2018;56(2):183–99.

    Article  Google Scholar 

  18. El-Azizy AR, Salaheldien M, Rushdi MA, Gewefel H, Mahmoud AM. Morphological characterization of breast tumors using conventional B-mode ultrasound images. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6620–6623). IEEE. 2019.

  19. Alvarenga AV, Infantosi AFC, Pereira WCA, Azevedo CM. Assessing the performance of morphological parameters in distinguishing breast tumors on ultrasound images. Med Eng Phys. 2010;32(1):49–56.

    Article  Google Scholar 

  20. Chang RF, Wu WJ, Moon WK, Chen DR. Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat. 2005;89(2):179–85.

    Article  Google Scholar 

  21. Behnam H, Zakeri FS, Ahmadinejad N. Breast mass classification on sonographic images on the basis of shape analysis. J Med Ultrasonics. 2010;37(4):181–6.

    Article  Google Scholar 

  22. Zakeri FS, Behnam H, Ahmadinejad N. Classification of benign and malignant breast masses based on shape and texture features in sonography images. J Med Syst. 2012;36(3):1621–7.

    Article  Google Scholar 

  23. Flores WG, de Albuquerque Pereira WC, Infantosi AFC. Improving classification performance of breast lesions on ultrasonography. Pattern Recogn. 2015;48(4):1125–36.

    Article  Google Scholar 

  24. Yap MH, Pons G, Marti J, Ganau S, Sentis M, Zwiggelaar R, Marti R. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform. 2017;22(4):1218–26.

    Article  Google Scholar 

  25. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell. 1990;12(7):629–39.

    Article  Google Scholar 

  26. Yu Y, Acton ST. Speckle reducing anisotropic diffusion. IEEE Trans Image Process. 2010;11(11):1260–70.

    MathSciNet  Google Scholar 

  27. Yu Y, Acton ST. Speckle reducing anisotropic diffusion. IEEE Trans Image Process. 2002;11(11):1260–70.

    Article  MathSciNet  Google Scholar 

  28. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput Vision. 1988;1(4):321–31.

    Article  MATH  Google Scholar 

  29. Acton ST, Ray N. Biomedical image analysis: segmentation. Synthesis Lectures Image Video Multimed Process. 2009;4(1):1–108.

    Article  Google Scholar 

  30. Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process. 2001;10(2):266–77.

    Article  MATH  Google Scholar 

  31. Loong TW. Understanding sensitivity and specificity with the right side of the brain. BMJ. 2003;327(7417):716–9.

    Article  Google Scholar 

  32. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Gao JH. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging. 2002;16(2):172–8.

    Article  Google Scholar 

  33. Singh BK, Verma K, Panigrahi L, Thoke AS. Integrating radiologist feedback with computer aided diagnostic systems for breast cancer risk prediction in ultrasonic images: an experimental investigation in machine learning paradigm. Expert Syst Appl. 2017;90:209–23.

    Article  Google Scholar 

  34. West DB. Introduction to graph theory, vol. 2. Upper Saddle River: Prentice hall; 2001.

    Google Scholar 

  35. Foulds LR. Graph theory applications. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  36. Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC. From time series to complex networks: the visibility graph. Proc Natl Acad Sci. 2008;105(13):4972–5.

    Article  MathSciNet  MATH  Google Scholar 

  37. Iacovacci J, Lacasa L. Visibility graphs for image processing. IEEE Trans Pattern Anal Mach Intell. 2019;42(4):974–87.

    Article  Google Scholar 

  38. Shao ZG. Network analysis of human heartbeat dynamics. Appl Phys Lett. 2010;96(7): 073703.

    Article  Google Scholar 

  39. Acharya UR, Ng EYK, Tan JH, Sree SV. Thermography based breast cancer detection using texture features and support vector machine. J Med Syst. 2012;36(3):1503–10.

    Article  Google Scholar 

  40. Pereira WCA, Alvarenga AV, Infantosi AFC, Macrini L, Pedreira CE. A non-linear morphometric feature selection approach for breast tumor contour from ultrasonic images. Comput Biol Med. 2010;40(11–12):912–8.

    Article  Google Scholar 

  41. Rangayyan RM, El-Faramawy NM, Desautels JL, Alim OA. Measures of acutance and shape for classification of breast tumors. IEEE Trans Med Imaging. 1997;16(6):799–810.

    Article  Google Scholar 

  42. Laws A, Mulvey TM, Jalbert N, Dalton S, Kantor O, Harris KA, Coopey SB. Baseline screening MRI uptake and findings in women with≥ 20% lifetime risk of breast cancer. Ann Surg Oncol. 2020;27(10):3595–602.

    Article  Google Scholar 

  43. McPherson DD, Aylward PE, Knosp BM, Bean JA, Kerber RE, Collins SM, Skorton DJ. Ultrasound characterization of acute myocardial ischemia by quantitative texture analysis. Ultrason Imaging. 1986;8(4):227–40.

    Article  Google Scholar 

  44. Byra M, Jarosik P, Szubert A, Galperin M, Ojeda-Fournier H, Olson L, Andre M. Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomed Signal Process Control. 2020;61: 102027.

    Article  Google Scholar 

  45. Costa MGF, Campos JPM, e Aquino GDA, de Albuquerque Pereira WC, Costa Filho CFF. Evaluating the performance of convolutional neural networks with direct acyclic graph architectures in automatic segmentation of breast lesion in US images. BMC Med Imaging. 2019;19(1):85.

    Article  Google Scholar 

  46. Zhang E, Seiler S, Chen M, Lu W, Gu X. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Phys Med Biol. 2020;65(12): 125005.

    Article  Google Scholar 

  47. Byra M, Andre M.Breast mass classification in ultrasound based on Kendall's shape manifold. arXiv preprint arXiv:1905.11159; 2019.

  48. Al-Dhabyani W, Gomaa M, Khaled H, Aly F. Deep learning approaches for data augmentation and classification of breast masses using ultrasound images. Int J Adv Comput Sci Appl. 2019;10(5):1–11.

    Google Scholar 

  49. Yu K, Chen S, Chen Y. Tumor segmentation in breast ultrasound image by means of res path combined with dense connection neural network. Diagnostics. 2021;11(9):1565.

    Article  Google Scholar 

  50. Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief. 2020;28: 104863.

    Article  Google Scholar 

  51. Chen L, Lu G & Zhang D. Effects of different Gabor filters parameters on image retrieval by texture. In: 10th International Multimedia Modelling Conference, 2004. Proceedings. (pp. 273–278). 2004. IEEE.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Farzam Kharajinezhadian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharajinezhadian, F., Yazdani, F., Isfahani, P.P. et al. Automatic Breast Tumor Classification in Ultrasound Images Using Morphological Features and New Texture Analysis Based on Image Visibility Graph and Gabor Filters. SN COMPUT. SCI. 4, 22 (2023). https://doi.org/10.1007/s42979-022-01431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01431-3

Keywords

Navigation