Skip to main content
Log in

EEG-Based Emotion Recognition Using Quantum Machine Learning

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Recognizing emotions is crucial for the development of artificial intelligence in various fields. This study explores the application of quantum support vector machines (SVMs) on emotion recognition from electroencephalogram (EEG) signals and compares its performance to traditional SVMs. SVMs are a popular machine-learning algorithm for this task due to their ability to handle high-dimensional data and non-linear relationships between input features. This study uses a quantum SVM to generate distinct solutions based on quantum principles. We applied this method to the DEAP benchmark dataset for binary class classification and gained new insights into the quantum nature of emotions. The algorithm has trained on D-Wave quantum annealer using various samples, achieving accuracies of 65.6% and 75.0% for valence and arousal dimensions, respectively, with 22 × 40 × 32 (subjects × trials × channels) data points, demonstrating the potential of quantum machine learning for EEG-based emotion recognition. However, there are methodological challenges due to the quantum arbitrariness of current annealers and the sensitivity of quantum-based machines to initial values. To address this, we conducted multiple investigations under similar circumstances and successfully recognized emotions using our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Neven H, Denchev V. Training a binary classifier with the quantum adiabatic algorithm. arXiv preprint arXiv:0811.0416.

  2. Ottaviani D, Amendola A, SpA E. Low rank non-negative matrix factorization with D-wave 2000Q. 2018.

  3. Omalley D, Vesselinov VV, Alexandrov BS, Alexandrov LB. Nonnegative/Binary matrix factorization with a D-Wave quantum annealer. PLOS ONE. 2018. https://doi.org/10.1371/journal.pone.0206653.

    Article  Google Scholar 

  4. Pudenz KL, Lidar DA. Quantum adiabatic machine learning. Quantum Inf Process. 2013. https://doi.org/10.1007/s11128-012-0506-4.

    Article  MathSciNet  MATH  Google Scholar 

  5. Potok TE, Schuman C, Young S, Patton R, Spedalieri F, Liu J, et al. A study of complex deep learning networks on high-performance, neuromorphic, and quantum computers. ACM J Emerg Technol Comput Syst. 2018. https://doi.org/10.1145/3178454.

    Article  Google Scholar 

  6. Neven H, Denchev VS, Rose G, MacReady WG. QBoost: large scale classifier training with adiabatic quantum optimization. J Mach Learn Res. 2012;25:333–58.

    Google Scholar 

  7. Li RY, di Felice R, Rohs R, Lidar DA. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Inf. 2018;4:14. https://doi.org/10.1038/s41534-018-0060-8.

    Article  Google Scholar 

  8. Scholkopf B, Smola AJ. Learning with kernels: support vector machines, regularization optimization, and beyond. England: MIT Press; 2001.

    Google Scholar 

  9. Bishop CM. Pattern recognition and machine learning (Information science and statistics). New York: Springer; 2006.

    MATH  Google Scholar 

  10. Xu H, Caramanis C, Mannor S. Robustness and regularization of support vector machines. J Mach Learn Res. 2009;10:1485–510.

    MathSciNet  MATH  Google Scholar 

  11. Li RH, Belford GG. Instability of decision tree classification algorithms. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2002. https://doi.org/10.1145/775047.775131

  12. Raczko E, Zagajewski B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur J Remote Sens. 2017. https://doi.org/10.1080/22797254.2017.1299557.

    Article  Google Scholar 

  13. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes: the art of scientific computing. 3rd ed. Cambridge: Cambridge University Press; 2007.

    MATH  Google Scholar 

  14. Lazri M, Ameur S. Combination of support vector machine, artificial neural network and random forest for improving the classification of convective and stratiform rain using spectral features of SEVIRI data. Atmos Res. 2018;203:118–29. https://doi.org/10.1016/j.atmosres.2017.12.006.

    Article  Google Scholar 

  15. Al-Smadi M, Qawasmeh O, Al-Ayyoub M, Jararweh Y, Gupta B. Deep Recurrent neural network vs. support vector machine for aspect-based sentiment analysis of Arabic hotels’ reviews. J Comput Sci. 2018;27:386–93. https://doi.org/10.1016/j.jocs.2017.11.006.

    Article  Google Scholar 

  16. Zareapoor M, Shamsolmoali P, Kumar Jain D, Wang H, Yang J. Kernelized support vector machine with deep learning: an efficient approach for extreme multiclass dataset. Pattern Recognit Lett. 2018;115:4–13. https://doi.org/10.1016/j.patrec.2017.09.018.

    Article  Google Scholar 

  17. Erfani SM, Rajasegarar S, Karunasekera S, Leckie C. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 2016. https://doi.org/10.1016/j.patcog.2016.03.028.

    Article  Google Scholar 

  18. Bunyk PI, Hoskinson EM, Johnson MW, Tolkacheva E, Altomare F, Berkley AJ, et al. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans Appl Supercond. 2014. https://doi.org/10.1109/TASC.2014.2318294.

    Article  Google Scholar 

  19. Johnson MW, Amin MHS, Gildert S, Lanting T, Hamze F, Dickson N, et al. Quantum annealing with manufactured spins. Nature. 2011. https://doi.org/10.1038/nature10012.

    Article  Google Scholar 

  20. D-Wave Systems Inc. Technical description of the D-wave quantum processing unit: user manual. D-wave user manual 09-1109A-O. 2018.

  21. Harris R, Johnson MW, Lanting T, Berkley AJ, Johansson J, Bunyk P, et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys Rev B Condens Matter Mater Phys. 2010. https://doi.org/10.1103/PhysRevB.82.024511.

    Article  Google Scholar 

  22. Mott A, Job J, Vlimant JR, Lidar D, Spiropulu M. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature. 2017. https://doi.org/10.1038/nature24047.

    Article  Google Scholar 

  23. Wang Y. Quantum computation and quantum information. Stat Sci. 2012. https://doi.org/10.1214/11-STS378.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys Rev Lett. 2014. https://doi.org/10.1103/PhysRevLett.113.130503.

    Article  Google Scholar 

  25. Barahona F. On the computational complexity of ising spin glass models. J Phys A Math Gen. 1982. https://doi.org/10.1088/0305-4470/15/10/028.

    Article  Google Scholar 

  26. Garg D, Verma GK, Singh AK. Modelling and statistical analysis of emotions in 3D space. Eng Res Express. 2022;4: 035062. https://doi.org/10.1088/2631-8695/ac93e8.

    Article  Google Scholar 

  27. Alarcao SM, Fonseca MJ. Emotions recognition using EEG signals: a survey. IEEE Trans Affect Comput. 2017;10:374–93.

    Article  Google Scholar 

  28. Gyongyosi L, Imre S. A Survey on quantum computing technology. Comput Sci Rev. 2019. https://doi.org/10.1016/j.cosrev.2018.11.002.

    Article  MathSciNet  MATH  Google Scholar 

  29. Bruza PD, Wang Z, Busemeyer JR. Quantum cognition: a new theoretical approach to psychology. Trends Cogn Sci. 2015. https://doi.org/10.1016/j.tics.2015.05.001.

    Article  Google Scholar 

  30. Dong D, Chen C, Zhang C, Chen Z. Quantum robot: Structure, algorithms and applications. Robotica. 2006. https://doi.org/10.1017/S0263574705002596.

    Article  Google Scholar 

  31. Cabanac M, Bonniot-Cabanac MC. Decision making: rational or hedonic? Behav Brain Funct. 2007. https://doi.org/10.1186/1744-9081-3-45.

    Article  Google Scholar 

  32. Garg D, Verma GK, Singh AK. A review of deep learning based methods for affect analysis using physiological signals. Multimed Tools Appl. 2023. https://doi.org/10.1007/s11042-023-14354-9.

    Article  Google Scholar 

  33. Ekman P, Friesen WV. Manual for the facial action coding system. Palo Alto, CA: Consulting Psychologist Press; 1978.

    Google Scholar 

  34. Ekman P. Basic emotions. In: Dalgleish T, Power M, editors. Handbook of cognition and emotion. Sussex, UK: Wiley; 1999.

    Google Scholar 

  35. Yang B, Han X, Tang J. Three class emotions recognition based on deep learning using staked autoencoder. In: Proceedings - 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017, vol. 2018- Janua. 2018. pp. 1–5. https://doi.org/10.1109/CISP-BMEI.2017.8302098.

  36. Zhang C, Xue L. Autoencoder with emotion embedding for speech emotion recognition. IEEE Access. 2021;9:51231–41. https://doi.org/10.1109/ACCESS.2021.3069818.

    Article  Google Scholar 

  37. Bhaskar S, Thasleema TM. Multimedia tools and applications LSTM model for visual speech recognition through facial expressions. Multimed Tools Appl. 2022. https://doi.org/10.1007/s11042-022-12796-1.

    Article  Google Scholar 

  38. Soleymani M, Lichtenauer J, Pun T, Pantic M. A multimodal database for affect recognition and implicit tagging. IEEE Trans Affect Comput. 2011;3:42–55.

    Article  Google Scholar 

  39. Gunes H, Piccardi M. Bi-modal emotion recognition from expressive face and body gestures. J Netw Comput Appl. 2007;30:1334–45. https://doi.org/10.1016/j.jnca.2006.09.007.

    Article  Google Scholar 

  40. Garg D, Verma GK. Emotion recognition in valence-arousal space from multi-channel EEG data and wavelet based deep learning framework. Procedia Comput Sci. 2020;171:857–67. https://doi.org/10.1016/j.procs.2020.04.093.

    Article  Google Scholar 

  41. Koelstra S, Mühl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T, et al. DEAP: A database for emotion analysis; using physiological signals. IEEE Trans Affect Comput. 2012;3:18–31. https://doi.org/10.1109/T-AFFC.2011.15.

    Article  Google Scholar 

  42. Welch PD. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics. 1967. https://doi.org/10.1109/TAU.1967.1161901.

    Article  Google Scholar 

  43. Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cognit Comput. 2018;10:368–80. https://doi.org/10.1007/s12559-017-9533-x.

    Article  Google Scholar 

  44. Pratama IWP, Kesiman MWA, Gunadi IGA. Frequency band and PCA feature comparison for EEG signal classification. Lontar Komput J Ilm Teknol Inf. 2021. https://doi.org/10.24843/lkjiti.2021.v12.i01.p01.

    Article  Google Scholar 

  45. Willsch D, Willsch M, De Raedt H, Michielsen K. Support vector machines on the D-Wave quantum annealer. Comput Phys Commun. 2020. https://doi.org/10.1016/j.cpc.2019.107006.

    Article  MathSciNet  MATH  Google Scholar 

  46. Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov. 1998. https://doi.org/10.1023/A:1009715923555.

    Article  Google Scholar 

  47. Gustavson DB. Microprocessor standards. IEEE Trans Nucl Sci. 1980. https://doi.org/10.1109/TNS.1980.4330898.

    Article  Google Scholar 

  48. Lesser B, Mücke M, Gansterer WN. Effects of reduced precision on floating-point SVM classification accuracy. Procedia Comput Sci. 2011. https://doi.org/10.1016/j.procs.2011.04.053.

    Article  Google Scholar 

  49. Choi V. Minor-embedding in adiabatic quantum computation: I. the parameter setting problem. Quantum Inf Process. 2008. https://doi.org/10.1007/s11128-008-0082-9.

    Article  MathSciNet  MATH  Google Scholar 

  50. Ohkuwa M, Nishimori H, Lidar DA. Reverse annealing for the fully connected p -spin model. Phys Rev A (Coll Park). 2018. https://doi.org/10.1103/PhysRevA.98.022314.

    Article  Google Scholar 

  51. Choi EJ, Kim DK. Arousal and valence classification model based on long short-term memory and DEAP data for mental healthcare management. Healthc Inform Res. 2018;24:309–16. https://doi.org/10.4258/hir.2018.24.4.309.

    Article  Google Scholar 

  52. Liu Y, Sourina O. Real-time subject-dependent EEG-based emotion recognition algorithm. In: Gavrilova ML, Tan CJK, Mao X, Hong L, editors. Transactions on computational science XXIII. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol. 8490. Berlin, Heidelberg: Springer; 2014.

    Google Scholar 

  53. Kumar N, Khaund K, Hazarika SM. Bispectral analysis of EEG for emotion recognition. Procedia Comput Sci. 2016. https://doi.org/10.1016/j.procs.2016.04.062.

    Article  Google Scholar 

  54. Pandey P, Seeja KR. Subject independent emotion recognition from EEG using VMD and deep learning. J King Saud Univ - Comput Inf Sci. 2022. https://doi.org/10.1016/j.jksuci.2019.11.003.

    Article  Google Scholar 

  55. Liang Z, Oba S, Ishii S. An unsupervised EEG decoding system for human emotion recognition. Neural Netw. 2019. https://doi.org/10.1016/j.neunet.2019.04.003.

    Article  Google Scholar 

  56. Yin Z, Liu L, Chen J, Zhao B, Wang Y. Locally robust EEG feature selection for individual-independent emotion recognition. Expert Syst Appl. 2020. https://doi.org/10.1016/j.eswa.2020.113768.

    Article  Google Scholar 

  57. Naser DS, Saha G. Influence of music liking on EEG based emotion recognition. Biomed Signal Process Control. 2021. https://doi.org/10.1016/j.bspc.2020.102251.

    Article  Google Scholar 

  58. Li R, Ren C, Zhang X, Hu B. A novel ensemble learning method using multiple objective particle swarm optimization for subject-independent EEG-based emotion recognition. Comput Biol Med. 2022. https://doi.org/10.1016/j.compbiomed.2021.105080.

    Article  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conception and design: GKV, AKS; data collection: DG; analysis and interpretation of results: DG, GKV; draft manuscript preparation: DG, GKV, AKS. All the authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Divya Garg.

Ethics declarations

Conflict of Interest

The authors of this manuscript declare no conflicts of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Research Trends in Computational Intelligence” guest edited by Anshul Verma, Pradeepika Verma, Vivek Kumar Singh and S. Karthikeyan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, D., Verma, G.K. & Singh, A.K. EEG-Based Emotion Recognition Using Quantum Machine Learning. SN COMPUT. SCI. 4, 480 (2023). https://doi.org/10.1007/s42979-023-01943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-01943-6

Keywords

Navigation