Abstract
Networks of interacting proteins orchestrate the responses of living cells to a variety of external stimuli1, but how sensitive is the functioning of these protein networks to variations in theirbiochemical parameters? One possibility is that to achieve appropriate function, the reaction rate constants and enzyme concentrations need to be adjusted in a precise manner, and any deviation from these ‘fine-tuned’ values ruins the network's performance. An alternative possibility is that key properties of biochemical networks are robust2; that is, they are insensitive to the precise values of the biochemical parameters. Here we address this issue in experiments using chemotaxis of Escherichia coli, one of the best-characterized sensory systems3,4. We focus on how response and adaptation to attractant signals vary with systematic changes in the intracellular concentration of the components of the chemotaxis network. We find that some properties, such as steady-state behaviour and adaptation time, show strong variations in response to varying protein concentrations. In contrast, the precision of adaptation is robust and does not vary with the protein concentrations. This is consistent with a recently proposed molecular mechanism for exact adaptation, where robustness is a direct consequence of the network's architecture2.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995).
Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).
Stock, J. B. & Surette, M. G. in Escherichia coli and Salmonella, Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1103–1129 (ASM Press, Washington, (1996)).
Falke, J. J., Bass, R. B., Butler, S. L., Chervitz, S. A. & Danielson, M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 (1997).
Bray, D., Bourret, R. B. & Simon, M. I. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 5, 469–482 (1993).
Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998).
Macnab, R. M. & Koshland, D. E. The gradient sensing mechanism in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 69, 2509–2512 (1972).
Berg, H. C. & Tedesco, P. Transient response to chemotaxis stimuli in Escherichia coli. Proc. Natl Acad. Sci. USA 72, 3235–3239 (1975).
Segel, L. A., Goldbeter, A., Devrotes, P. N. & Knox, B. E. Amechanism for exact sensory adaptation based on receptor modification. J. Theor. Biol. 120, 151–179 (1986).
Hauri, D. C. & Ross, J. A. Amodel of excitation and adaption in bacterial chemotaxis. Biophys. J. 68, 708–722 (1995).
Spiro, P. A., Parkinson, J. S. & Othmer, H. G. Amodel of excitation and adaptation in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 94, 7263–7268 (1997).
Asakura, S. & Honda, H. Two-state model for bacterial chemoreceptor proteins. J. Mol. Biol. 176, 349–367 (1984).
Fell, D. Understanding the Control of Metabolism (Portland Press, London, (1997)).
Alon, U. et al. Response regulator output in bacterial chemotaxis. EMBO J. 17, 4238–4248 (1998).
Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972).
Parkinson, J. S. & Houts, S. Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis function. J. Bacteriol. 151, 106–113 (1982).
Wolfe, A. J., Conley, P. M., Kramer, T. J. & Berg, H. C. Reconstitution of signaling in bacterial chemotaxis. J. Bacteriol. 169, 1878–1885 (1987).
Russel, C. B., Stewart, R. C. & Dahlquist, F. W. Control of transducer methylation levels in Escherichia coli: investigation of components essential for modulation of methylation and demethylation reactions. J. Bacteriol. 171, 3609–3618 (1989).
Levin, M., Morton-Firth, C., Abouhamad, W., Bourret, R. & Bray, D. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175–181 (1998).
Stewart, R. C., Russel, C. B., Roth, A. F. & Dahlquist, F. W. Interaction of CheB with chemotaxis signal transduction components in Escherichia coli: modulation of the methylesterase activity and effects on cell swimming behavior. Cold Spring Harb. Symp. Quant. Biol. LIII, 27–40 (1988).
Lupas, A. & Stock, J. B. Phosphorylation of an N-terminus regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264, 17337–17342 (1989).
Segall, J. E., Block, S. M. & Berg, H. C. Temporal comparisons in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 83, 8987–8991 (1986).
Stock, J., Kersulis, G. & Koshland, D. E. Neither methylating nor demethylating enzymes are required for bacterial chemotaxis. Cell 42, 683–690 (1985).
Weis, R. M. & Koshland, D. E. Reversible methylation is essential for normal chemotaxis in Escherichia coli in gradients of aspartic acid. Proc. Natl Acad. Sci. USA 86, 83–87 (1988).
Berg, H. & Turner, L. Chemotaxis of bacteria in glass capillary arrays. Biophys. J. 58, 919–930 (1990).
Weis, R. M. & Koshland, D. E. Chemotaxis in Escherichia coli proceeds efficiently from different initial tumble frequencies. J. Bacteriol. 172, 1099–1105 (1990).
Kirsch, M. L. et al. Chemotactic methyltransferase promotes adaptation to repellents in Bacillus subtilis. J. Biol. Chem. 268, 25350–25356 (1993).
Grishanin, R. N., Gauden, D. E. & Armitage, J. P. Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport. J. Bacteriol. 179, 24–30 (1997).
Simms, A. S., Keane, M. G. & Stock, J. B. Multiple forms of the CheB methyltransferase in bacterial chemosensing. J. Biol. Chem. 260, 10161–10168 (1985).
Surette, M. G. & Stock, J. B. Role of α-helical coiled-coil interactions in receptor dimerization, signaling and adaptation during bacterial chemotaxis. J. Biol. Chem. 271, 17966–17973 (1996).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alon, U., Surette, M., Barkai, N. et al. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999). https://doi.org/10.1038/16483
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/16483