Abstract
Discrete, stable small RNA molecules are found in the nuclei of cells1 from a wide variety of eukaryotic organisms2. Many of these small nuclear RNA (snRNA) species, which range in size from about 90 to 220 nucleotides, have been well-characterised biochemically3–6, and some sequenced7,8. However, their function has remained obscure. The most abundant snRNA species exist as a closely related set of RNA–protein complexes called small nuclear ribonucleoproteins (snRNPs)9. snRNPs are the antigens recognised by antibodies from some patients with lupus erythematosus (LE), an autoimmune rheumatic disease10,11. Anti-RNP antibodies from lupus sera selectively precipitate snRNP species containing Ula7 and Ulb9 RNAs from mouse Ehrlich ascites cell nuclei, whereas anti-Sm antibodies bind these snRNPs and four others containing U2 (ref. 8), U4, US and U6 (ref. 9) RNAs. Both antibody systems precipitate the same seven prominent nuclear proteins (molecular weight 12,000–32,000). All molecules of the snRNAs U1, U2, U4, U5 and U6 appear to exist in the form of antigenic snRNPs9. The particles sediment at about 10S and each probably contains a single snRNA molecule. Indirect immunofluorescence studies (refs 12, 13, and unpublished observations) using anti-RNP and anti-Sm sera confirm the nuclear (but non-nucleolar) location of the antigenic snRNPs. Here we present several lines of evidence that suggest a direct involvement of snRNPs in the splicing of hnRNA. Most intriguing is the observation that the nucleotide sequence at the 5′ end of U1 RNA exhibits extensive complementarity to those across splice junctions in hnRNA molecules.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Weinberg, R. & Penman, S. J. molec. Biol. 38, 289–304 (1968).
Hellung-Larsen, P. & Frederiksen, S. Comp. Biochem. Physiol. 58B, 273–281 (1977).
Ro-Choi, T. S. & Busch, H. in The Cell Nucleus (ed. Busch, H.) 151–208 (Academic, New York, 1974).
Zieve, G. & Penman, S. Cell 8, 19–31 (1976).
Benecke, B.-J. & Penman, S. Cell 12, 939–946 (1977).
Jelinek, W. & Leinwand, L. Cell 15, 205–214 (1978).
Reddy, R., Ro-Choi, T. S., Henning, D. & Busch, H. J. biol. Chem. 249, 6486–6494 (1974).
Shibata, H. et al. J. biol. Chem. 250, 3909–3920 (1975).
Lerner, M. R. & Steitz, J. A. Proc. natn. Acad. Sci. U.S.A. 76, 5495–5499 (1979).
Notman, D. D., Kurata, N. & Tan, E. M. Ann. Int. Med. 83, 464–469 (1979).
Provost, T. T. J. Invest. Dermatol. 72, 110–113 (1979).
Mattioli, M. & Reichlin, M. J. Immun. 107, 1281–1290 (1971).
Northway, J. O. & Tan, E. M. Clin. Immun. Immunopath. 1, 140–154 (1972).
Weil, P. A., Luse, D. S., Segall, J. & Roeder, R. G. Cell 18, 469–484 (1979).
Hamer, D. H. & Leder, P. Nature 281, 35–40 (1979).
Mantei, N., Boll, W. & Weissmann, C. Nature 281, 40–46 (1979).
Mulligan, R. C., Howard, B. H. & Berg, P. Nature 277, 108–114 (1979).
Martin, T. et al. Cold Spring Harb. Symp. quant. Biol. 38, 921–932 (1973).
Karn, J., Vidali, G., Boffa, L. C. & Allfrey, V. G. J. biol. Chem. 252, 7307–7322 (1977).
Beyer, A. L., Christensen, M. E., Walker, B. W. & L. Stourgeon, W. M. Cell 11, 127–138 (1977).
Howard, E. F. Biochemistry 17, 3228–3236 (1978).
Deimel, B., Louis, C. & Sekeris, C. E. FEBS Lett. 73, 80–84 (1977).
Northemann, W., Scheurlen, M., Gross, V. & Heinrich, P. C. Biochem. biophys. Res. Commun. 76, 1130–1137 (1977).
Guimont-Ducamp, C., Sri-Widada, J. & Jeanteur, P. Biochimie 59, 755–758 (1977).
Kim, S.-H. in Transfer RNA (ed. Altman S.) 248–293 (MIT, Cambridge, Mass., 1979).
Murray, V. & Holliday, R. FEBS Lett. 106, 5–7 (1979).
Stark, B. C., Kole, R., Bowman, E. J. & Altman, S. Proc. natn. Acad. Sci. U.S.A. 75, 3717–3721 (1978).
Blanchard, J.-M., Weber, J., Jelinek, W. & Darnell, J. E. Proc. natn. Acad. Sci. U.S.A. 75, 5344–5348 (1978).
Manley, J. L., Sharp, P. A. & Gefter, M. L. J. molec. Biol. (in the press).
Hamer, D. H., Smith, K. D., Boyer, S. H. & Leder, P. Cell 17, 725–735 (1979).
Gruss, P., Lai, C.-J., Dhar, R. & Khoury, G. Proc. natn. Acad. U.S.A. 76, 4317–4321 (1979).
Reanney, D. Nature 277, 598–600 (1979).
Crick, F. Science 204, 264–271 (1979).
Roberts, R. J. Nature 274, 530 (1978).
Church, G. M., Slonimski, P. P. & Gilbert, W. Cell (in the press).
Lomedico, P. et al. Cell 18, 545–558 (1979).
Honjo, T. et al. Cell 18, 559–568 (1979).
Sakano, H. et al. Nature 277, 627–633 (1979).
Tonegawa, S., Maxam, A. M., Tizard, R., Bernard, O. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 75, 1485–1489 (1978).
Bernard, O., Hozumi, N. & Tonegawa, S. Cell 15, 1133–1144 (1978).
Max, E. E., Seidman, J. G. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 76, 3450–3454 (1979).
Seidman, J. G., Max, E. E. & Leder, P. Nature 280, 370–375 (1979).
van Ooyen, A., van den Berg, J., Mantei, N. & Weissmann, C. Science 206, 337–344 (1979).
Lawn, R. M., Fritsch, E. F., Parker, R. C., Blake, G. & Maniatis, T. Cell 15, 1157–1174 (1978).
Gannon, F. et al. Nature 278, 428–434 (1979).
Catterall, J. F. et al. Nature 275, 510–513 (1978).
Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 75, 4853–4857 (1978).
Ghosh, P. K., Reddy, V. R., Swinscoe, J., Lebowitz, P. & Weissman, S. M. J. molec. Biol. 126, 813–846 (1978).
Fiers, W. et al. Nature 273, 113–120 (1978).
Tsujimoto, Y. & Suzuki, Y. Cell 18, 591–600 (1979).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lerner, M., Boyle, J., Mount, S. et al. Are snRNPs involved in splicing?. Nature 283, 220–224 (1980). https://doi.org/10.1038/283220a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/283220a0
This article is cited by
-
The unusual gene architecture of polyubiquitin is created by dual-specific splice sites
Genome Biology (2024)
-
RNA metabolism and links to inflammatory regulation and disease
Cellular and Molecular Life Sciences (2022)
-
Phylogeny and conservation of plant U2A/U2A’, a core splicing component in U2 spliceosomal complex
Planta (2022)
-
A single m6A modification in U6 snRNA diversifies exon sequence at the 5’ splice site
Nature Communications (2021)
-
Architecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA
Nature Communications (2018)