Abstract
One of the best models for studying the control of mammalian cell growth and proliferation is the response of lymphocytes to mitogenic agents1–4, which stimulate growth, DNA synthesis and division. How mitogens work remains obscure, although it has been hypothesized that they increase cytoplasmic free calcium, [Ca2+]i, as a trigger for the cascade of intracellular processes necessary for proliferation3–6. However, lymphocyte [Ca2+]i has not previously been measurable. A new technique7 for loading a novel Ca2+-specific indicator8 into the cytoplasm of intact small cells has now made possible the first direct measurements of [Ca2+]i in mouse thymocytes and pig node lymphocytes. We show here that lectins known to stimulate T cells raise average [Ca2+]1 approximately twofold within a few minutes. Deprivation of external Ca2+or elevation of cyclic AMP, conditions known to inhibit mitogenesis, prevented the [Ca2+]i response. Rises in [Ca2+]i were accompanied by hyper-polarization of the membrane potential, apparently due to a Ca2+-activated K+conductance. The co-carcinogen 12-0-tetradecanoylphorbol-13-acetate (TPA) seems to stimulate cell functions normally activated by Ca2+.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Oppenheim, J. J. & Rosenstreich, D. L. Prog. Allergy 20, 65–194 (1976).
Wedner, H. J. & Parker, C. W. Prog. Allergy 20, 195–300 (1976).
Metcalfe, J. C., Pozzan, T., Smith, G. A. & Hesketh, T. R. Biochem. Soc. Symp. 45, 1–26 (1980).
Hume, D. A. & Weidemann, M. J. Mitogenic Lymphocyte Transformation (Elsevier, Amsterdam, 1980).
Coffey, R. G., Hadden, E. M. & Hadden, J. W. J. Immun. 119, 1387–1394 (1977).
Whitfield, J. F. et al. Ann. N.Y. Acad. Sci. 339, 216–240 (1980).
Tsien, R. Y. Nature 290, 527–528 (1981).
Tsien, R. Y. Biochemistry 19, 2396–2404 (1980).
Pozzan, T., Rink, T. J. & Tsien, R. Y. J. Physiol., Lond. 318, 12P–13P (1981); J. Cell Biol. (submitted).
Lichtman, M. A., Jackson, A. H. & Peck, W. A. J. cell. Physiol. 80, 383–396 (1972).
Pozzan, T., Rink, T. J. & Tsien, R. Y. J. Physiol., Lond. 319, 102P (1981).
Rink, T. J., Montecucco, C., Hesketh, T. R. & Tsien, R. Y. Biochim. biophys. Acta 595, 15–30 (1980).
Alvarez-Leefmans, F. J., Rink, T. J. & Tsien, R. Y. J. Physiol., Lond. 315, 531–548 (1981).
Pozzan, T., Arslan, P., Tsien, R. Y. & Rink, T. J. J. Cell Biol. (submitted).
Maino, V. C., Green, N. M. & Crumpton, M. J. Nature 251, 324–327 (1974).
Lyall, R. M., DuBois, J. H. & Crumpton, M. J. Biochem. Soc. Trans. 8, 720–721 (1980).
Lew, V. L. & Ferreira, H. G. Curr. Topics Membranes Transport 10, 217–277 (1978).
Freedman, M. H. in Cell Biology and Immunology of Leukocyte Function (ed. Quastel, M.R.) (Academic, New York, 1979).
Bard, E., Colwill, R., L'Anglais, R. & Kaplan, J. G., J. Biochem. 56, 900–904 (1978).
Watson, J. J. Immun. 117, 1656–1663 (1976).
DeRubertis, F. R. & Zenser, T. Biochim. biophys. Acta 428, 91–103 (1976).
Whitesell, R. R., Hoffman, L. H. & Regen, D. M. J. biol. Chem. 252, 3533–3537 (1977).
Gerhart, S., Mills, G., Monticone, V. & Paetkau, V. J. Immun. 117, 1314–1319 (1976).
Wagner, H. et al. Immun. Rev. 51, 215–255 (1980).
Iversen, J. G. J. cell. Physiol. 89, 267–276 (1976).
Montecucco, C., Rink, T. J., Pozzan, T. & Metcalfe, J. C. Biochim. biophys. Acta 595, 65–70 (1980).
Whitfield, J. F., MacManus, J.P. & Gillan, D.J. J. cell. Physiol. 82, 151–156 (1973).
Mastro, A. M. & Mueller, G. C. Expl Cell Res. 88, 40–46 (1974).
Wang, J. L., McClain, D. A. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 72, 1917–1921 (1975).
Rosenstreich, D. L. & Mizel, S. B. J. Immun. 123, 1749–1754 (1979).
Estensen, R. D., DeHoogh, D. K. & Cole, C. F. Cancer Res. 40, 1119–1124 (1980).
Schleimer, R. P., Gillespie, E. & Lichtenstein, L. M. J. Immun. 126, 570–574 (1981).
Estensen, R. D. et al. in Control of Proliferation in Animal Cells (eds Clarkson, B. & Baserga, R.) (Cold Spring Harbor Press, New York, 1974).
Malaisse, W. J. et al. Cancer Res. 40, 3827–3831 (1980).
Dunphy, W. G., Kochenburger, R. J., Castagna, M. & Blumberg, P. M. Cancer Res. 41, 2640–2647 (1981).
Hesketh, T. R., Smith, G. A., Houslay, M. D., Warren, G. B. & Metcalfe, J. C. Nature 267, 490–494 (1977).
Resch, K., Ferber, E., Prester, M. & Gelfand, E. W. Eur. J. Immun. 6, 168–173 (1976).
Gron ik, K. -O. & Andersson, J. Immun. Rev. 51, 35–59 (1980).
Kiefer, H., Blume, A. J. & Kaback, H. R. Proc. natn. Acad. Sci. U.S.A. 77, 2200–2204 (1980).
Deutsch, C. J., Holian, A., Holian, S. K., Daniele, R. P. & Wilson, D. F. J. cell. Physiol. 99, 79–94 (1979).
Montecucco, C., Pozzan, T. & Rink, T. J. Biochim. biophys. Acta 552, 552–557 (1979).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tsien, R., Pozzan, T. & Rink, T. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295, 68–71 (1982). https://doi.org/10.1038/295068a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/295068a0
This article is cited by
-
Toll-Like Receptor 4 Signaling in Neurons Mediates Cerebral Ischemia/Reperfusion Injury
Molecular Neurobiology (2023)
-
Spatio-temporal parameters for optical probing of neuronal activity
Biophysical Reviews (2021)
-
Prion peptide-mediated calcium level alteration governs neuronal cell damage through AMPK-autophagy flux
Cell Communication and Signaling (2020)
-
Inhibition of Autophagy by Captopril Attenuates Prion Peptide-Mediated Neuronal Apoptosis via AMPK Activation
Molecular Neurobiology (2019)
-
Carbon monoxide-induced TFEB nuclear translocation enhances mitophagy/mitochondrial biogenesis in hepatocytes and ameliorates inflammatory liver injury
Cell Death & Disease (2018)