Abstract
Altered structure and regulation of the c-myc proto-oncogene have been associated with a variety of human tumours and derivative cell lines, including Burkitt's lymphoma1,2, promyelocytic leukaemia3,4 and small cell lung cancer (SCLC)5. The N-myc gene, first detected by its homology to the second exon of the c-myc gene, is amplified and/or expressed in tumours or cell lines derived from neuroblastoma6–8, retinoblastoma9 and SCLC10. Here we describe a third myc-related gene (L-myc) cloned from SCLC DNA with homology to a small region of both the c-myc and N-myc genes. Human genomic DNA shows an EcoRI restriction fragment length polymorphism (RFLP) of L-myc defined by two alleles (10.0- and 6.6-kilobase (kb) EcoRI fragments), neither associated disproportionately with SCLC. Mouse and hamster DNAs exhibit a 12-kb EcoRI L-myc homologue, which indicates conservation of the gene in mammals. Gene mapping studies assign L-myc to human chromosome region Ip32, a location distinct from that of either c-myc1,11 or N-myc12 but associated with cytogenetic abnormalities in certain human tumours13. This L-myc sequence is amplified 10–20-fold in four SCLC cell line DNAs and in one SCLC tumour specimen taken directly from a patient. Either the 10.0- or 6.6-kb allele can be amplified and in heterozygotes only one of the two alleles was amplified in any SCLC genome. SCLC cell lines with amplified L-myc sequences express L-myc-derived transcripts not seen in SCLC with amplified c-myc or N-myc genes. In addition, some SCLCs without amplification also express L-myc-related transcripts. Together, these findings suggest an enlarging role for myc-related genes in human lung cancer and provide evidence for the concept of a myc family of proto-oncogenes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Taub, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7837–7841 (1982).
Dalla-Favera, R. et al. Science 219, 963–967 (1983).
Dalla-Favera, R., Wong-Staal, F. & Gallo, R. C. Nature 299, 61–63 (1982).
Collins, S. & Groudine, M. Nature 298, 679–681 (1982).
Little, C. D., Nau, M. M., Carney, D. N., Gazdar, A. F. & Minna, J. D. Nature 306, 194–196 (1983).
Schwab, M. et al. Nature 305, 245–248 (1983).
Kohl, N. E., Gee, C. E. & Alt, F. W. Science 226, 1335–1337 (1984).
Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Science 224, 1121–1124 (1984).
Lee, W.-H., Murphree, A. L. & Benedict, W. F. Nature 309, 458–460 (1984).
Nau, M. M., Brooks, B. J. Jr, Carney, D. N., Gazdar, A. F. & Minna, J. D. Proc. natn. Acad. Sci. U.S.A. (in the press).
Neel, B. G., Jhanwar, S. C., Chaganti, R. S. K. & Hayward, W. S. Proc. natn. Acad. Sci. U.S.A. 79, 7842–7846 (1982).
Schwab, M. et al. Nature 308, 288–291 (1984).
Greene, M. et al. Proc. natn. Acad. Sci. U.S.A. 80, 6071–6075 (1983).
Battey, J. et al. Cell 34, 779–787 (1983).
Dalla Favera, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 6497–6501 (1982).
Krontiris, T. G., DiMartino, N. A., Colb, M. & Parkinson, D. R. Nature 313, 371–374 (1985).
Schmidt, C., Hamer, D. & McBride, O. W. Science 224, 1104–1106 (1984).
McBride, O. W. et al. J. exp. Med. 155, 1480–1490 (1982).
McBride, O. W. et al. Nucleic Acids Res. 10, 8155–8170 (1982).
Morton, C. C. et al. Science 223, 173–175 (1984).
Ryan, J. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4460–4463 (1983).
Gazdar, A. F., Carney, D. N., Nau, M. M. & Minna, J. D. Cancer Res. 45, 2924–2930 (1985).
Carney, D. N. et al. Cancer Res. 45, 2913–2923 (1985).
Hieter, P. A. et al. Nature 294, 536–540 (1981).
Southern, E. J. molec. Biol. 98, 503–517 (1975).
Wahl, G. M., Stern, M. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 76, 3683–3687 (1979).
Polsky, F., Edgell, M. H., Seidman, J. G. & Leder, P. Analyt. Biochem. 87, 397–410 (1978).
Blattner, F. R. et al. Science 196, 161–169 (1977).
Sausville, E., Carney, D. N. & Battey, J. J. biol. Chem. 260, 10236–10241 (1985).
Chirgwin, J., Przybyla, A., McDonald, R. & Rutter, W. Biochemistry 18, 5294–5299 (1979).
Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A 69, 264–268 (1972).
Lehrach, H., Diamond, D., Wozney, J. & Boedtker, H. Biochemistry 16, 4743–4751 (1977).
Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).
Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
Bethesda Research Laboratory User Manual (BRL, 1981).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
Kirsch, I., Morton, C., Nakahara, K. & Leder, P. Science 216, 301–303 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Nau, M., Brooks, B., Battey, J. et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318, 69–73 (1985). https://doi.org/10.1038/318069a0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/318069a0
This article is cited by
-
Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts
Nature Communications (2022)
-
Small-cell lung cancer
Nature Reviews Disease Primers (2021)
-
k-core genes underpin structural features of breast cancer
Scientific Reports (2021)
-
LncRNAs as key players in the MYC pathways
Genome Instability & Disease (2021)
-
Target gene-independent functions of MYC oncoproteins
Nature Reviews Molecular Cell Biology (2020)