Abstract
A number of human genes have been identified in which mutations can lead to the accelerated emergence of features of senescence. Studies of these genes, and of the functions of their protein products, may lead to a clearer understanding of the nature of senescence, and could provide clues for ways in which ageing might be retarded.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Rose, M. R. Evolutionary Biology of Aging (Oxford Univ. Press, Oxford, 1991).
Martin, G. M. Genetic Effects on Aging Vol. II (ed. Harrison, D. E.) 493–520 (Telford Press, Caldwell, NJ, 1990).
Grist, S. A., McCarron, M., Kutlaca, A., Turner, D. R. & Morley, A. A. In vivo human somatic mutation: frequency and spectrum with age. Mutat. Res. 266, 189–196 (1992).
Martin, G. M. et al. Somatic mutations are frequent and increase with age in human kidney epithelial cells. Hum. Mol. Genet. 5, 215–221 (1996).
Crow, J. F. Spontaneous mutation in man. Mutat. Res. 437, 5–9 (1999).
Yu, C. E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 ( 1996).
Fukuchi, K., Martin, G. M. & Monnat, R. J. Jr Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc. Natl Acad. Sci. USA 86, 5893–5897 ( 1989). [Published erratum appears in Proc. Natl Acad. Sci. USA 86, 7994 (1989).]
Epstein, C. J., Martin, G. M., Schultz, A. L. & Motulsky, A. G. Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Med. Baltimore 45, 177–221 (1966).
Goto, M., Miller, R. W., Ishikawa, Y. & Sugano, H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol. Biomarkers Prev. 5, 239– 246 (1996).
Gimbrone, M. A. Jr Endothelial dysfunction, hemodynamic forces, and atherosclerosis . Thromb. Haemost. 82, 722– 726 (1999).
Martin, G. M., Sprague, C. A. & Epstein, C. J. Replicative life-span of cultivated human cells. Effects of donor's age, tissue, and genotype. Lab. Invest. 23, 86–92 (1970).
Ogburn, C. E. et al. An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants . Hum. Genet. 101, 121– 125 (1997).
Castro, E. et al. Polymorphisms at the Werner locus: I. Newly identified polymorphisms, ethnic variability of 1367Cys/Arg, and its stability in a population of Finnish centenarians. Am. J. Med. Genet. 82, 399 –403 (1999).
Ye, L. et al. Association of a polymorphic variant of the Werner helicase gene with myocardial infarction in a Japanese population. Am. J. Med. Genet. 68, 494–498 ( 1997). [Published erratum appears in Am. J. Med. Genet. 70, 103 (1997).]
Huang, S. et al. The premature aging syndrome protein, WRN, is a 3′ 5′ exonuclease. Nature Genet. 20, 114– 116 (1998).
Shen, J. C. et al. Werner syndrome protein. I. DNA helicase and dna exonuclease reside on the same polypeptide. J. Biol. Chem. 273, 34139–34144 (1998).
Suzuki, N., Shiratori, M., Goto, M. & Furuichi, Y. Werner syndrome helicase contains a 5′ 3′ exonuclease activity that digests DNA and RNA strands in DNA/DNA and RNA/DNA duplexes dependent on unwinding. Nucleic Acids Res. 27, 2361–2368 (1999).
Poot, M., Hoehn, H., Runger, T. M. & Martin, G. M. Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp. Cell Res. 202, 267–273 (1992).
Yan, H., Chen, C. Y., Kobayashi, R. & Newport, J. Replication focus-forming activity 1 and the Werner syndrome gene product . Nature Genet. 19, 375– 378 (1998).
Lebel, M., Spillare, E. A., Harris, C. C. & Leder, P. The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J. Biol. Chem. 274, 37795–37799 (1999).
Gray, M. D. et al. The Werner syndrome protein is a DNA helicase. Nature Genet. 17, 100–103 (1997).
Cooper, M. P. et al. Ku complex interacts with and stimulates the Werner protein . Genes Dev. 14, 907–912 (2000).
Li, B. & Comai, L. Functional interaction between Ku and the Werner syndrome protein in DNA end processing. J. Biol. Chem. 275, 28349–28352 ( 2000).
Balajee, A. S. et al. The Werner syndrome protein is involved in RNA polymerase II transcription. Mol. Biol. Cell 10, 2655 –2668 (1999).
Blander, G. et al. Physical and functional interaction between p53 and the Werner's syndrome protein. J. Biol. Chem. 274, 29463 –29469 (1999).
Hanada, K. et al. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc. Natl Acad. Sci. USA 94, 3860–3865 (1997).
Yamagata, K. et al. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases . Proc. Natl Acad. Sci. USA 95, 8733– 8738 (1998).
Fu, Y. H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256– 1258 (1992).
Tiscornia, G. & Mahadevan, M. S. Myotonic dystrophy: the role of the CUG triplet repeats in splicing of a novel DMPK exon and altered cytoplasmic DMPK mRNA isoform ratios. Mol. Cell 5, 959 –967 (2000).
Harley, H. G. et al. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 52, 1164–1174 ( 1993).
Harnshere, M. G. et al. Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J. Med. Genet. 36, 59– 61 (1999).
Klesert, T. R. et al. Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nature Genet. 25, 105 –109 (2000).
Lee, A. T. & Cerami, A. Role of glycation in aging. Ann. NY Acad. Sci. 663, 63–70 (1992).
Seip, M. & Trygstad, O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr. Suppl. 413, 2–28 (1996).
Garg, A., Fleckenstein, J. L., Peshock, R. M. & Grundy, S. M. Peculiar distribution of adipose tissue in patients with congenital generalized lipodystrophy. J Clin. Endocrinol. Metab. 75, 358–361 (1992).
Garg, A., Chandalia, M. & Vuitch, F. Severe islet amyloidosis in congenital generalized lipodystrophy . Diabetes Care 19, 28– 31 (1996).
Westvik, J. Radiological features in generalized lipodystrophy. Acta Paediatr. Suppl. 413, 44–51 (1996).
Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45– 51 (1997).
Martin, G. M. & Mian, I. New mice for old questions. Nature 390, 18–19 ( 1997).
Garg, A. et al. A gene for congenital generalized lipodystrophy maps to human chromosome 9q34. J. Clin. Endocrinol. Metab. 84, 3390–3394 (1999).
Brown, W. T. Progeria: a human-disease model of accelerated ageing. Am. J Clin. Nutr. 55, 1222S–1224S ( 1992).
Oshima, J., Brown, W. T. & Martin, G. M. No detectable mutations at Werner helicase locus in progeria. Lancet 348, 1106 (1996).
Ly, D. H., Lockhart, D. J., Lerner, R. A. & Schultz, P. G. Mitotic misregulation and human ageing. Science 287 , 2486–2492 (2000).
Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts . Proc. Natl Acad. Sci. USA 89, 10114– 10118 (1992).
Wang, S., Nishigori, C., Yagi, T. & Takebe, H. Reduced DNA repair in progeria cells and effects of gamma-ray irradiation on UV-induced unscheduled DNA synthesis in normal and progeria cells. Mutat. Res. 256, 59–66 (1991).
Sohal, R. S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273, 59– 63 (1996).
Martin, G. M., Austad, S. N. & Johnson, T. E. Genetic analysis of aging: role of oxidative damage and environmental stresses. Nature Genet. 13, 25–34 (1996).
Martin, G. M. in Handbook of the Aging Brain (eds Wang, E. & Snyder, D. S.), 126–134 (Academic, New York, 1998).
McKusick, V. A. Mendelian Inheritance in Man, 12th edn (Johns Hopkins Univ. Press, Baltimore, MD, 1998).
Kitao S. et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genet. 22, 82– 84 (1998).
Vennos, E. M. et al. Rothmund-Thomson syndrome: review of the world literature . J Am. Acad. Dermatol. 7, 750– 762 (1992).
Henning, K. A. et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555–564 ( 1995).
Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71, 939–953 ( 1992).
Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42, 68– 84 (1992).
Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749– 1753 (1995).
Gatti, R. A. et al. Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis . Medicine 70, 99–117 (1991).
Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).
van der Burgt, I. et al. Nijmegen breakage syndrome. J. Med. Genet. 33, 20–32 (1996).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Martin, G., Oshima, J. Lessons from human progeroid syndromes. Nature 408, 263–266 (2000). https://doi.org/10.1038/35041705
Issue Date:
DOI: https://doi.org/10.1038/35041705
This article is cited by
-
Analysis of a rare progeria variant of Barrier-to-autointegration factor in Drosophila connects centromere function to tissue homeostasis
Cellular and Molecular Life Sciences (2023)
-
Age-related mechanisms in the context of rheumatic disease
Nature Reviews Rheumatology (2022)
-
Optimized Repli-seq: improved DNA replication timing analysis by next-generation sequencing
Chromosome Research (2022)
-
Human WRN is an intrinsic inhibitor of progerin, abnormal splicing product of lamin A
Scientific Reports (2021)