Abstract
As its name suggests, the ATM ? 'ataxia-telangiectasia, mutated' ? gene is responsible for the rare disorder ataxia-telangiectasia. Patients show various abnormalities, mainly in their responses to DNA damage, but also in other cellular processes. Although it is hard to understand how a single gene product is involved in so many physiological processes, a clear picture is starting to emerge.
Key Points
online summary
-
Ataxia-telangiectasia, mutated (ATM) is the gene responsible for the rare disorder ataxia-telangiectasia. Patients show abnormalities mainly in their response to DNA damage.
-
ATM acts specifically in the cellular response to ionizing radiation and DNA double-stranded breaks (DSBs).
-
ATM differs from other similar DNA-repair enzymes (ATR and DNA-PK) in that its activity does not depend on manganese and, unlike DNA-PK, it is not clear that the activity of ATM is directly activated by DNA ends.
-
The cell-cycle checkpoint responses at G1, S and G2 are all markedly abnormal in ATM-deficient cells.
-
ATM is proposed to regulate the G1 checkpoint through indirect regulation of p53. Evidence indicates that ATM phosphorylates another kinase CHK2, which in turn phosphorylates p53. This disrupts the interaction between p53 and MDM2, and so induces a G1 checkpoint.
-
ATM controls the S-phase checkpoint through phosphorylation of NBS1, which localizes in a complex that is recruited to DSBs. Other proteins in this complex are also possible targets.
-
None of the proteins that regulates the G2?M checkpoint has been identified as an ATM target. Evidence is discussed in support of coordination between two candidates ? CHK1 and CHK2 ? which are phosphorylated by ATR and ATM, respectively. BRCA1, which is phosphorylated by both ATM and CHK2, is also implicated.
-
ATM-deficient cells show abnormal DSB repair. This may be due to abnormal chromatin remodelling; this is supported by the observation that ATM binds to the chromatin-remodelling enzyme histone deacetylase. ATM is also required for homologous recombination, one of the pathways that functions to repair DSBs.
-
Patients with ataxia telangiectasia also have abnormal nervous-system development and insulin signalling. It is not clear whether the defects observed in these patients are due just to a loss of DSB repair in these tissues or whether ATM functions in other signalling pathways here.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749? 1753 (1995).The report of the cloning of the ATM gene after a two-decade search.
Hunter, T. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83, 1?4 ( 1995).
Lavin, M. F. & Shiloh, Y. The genetic defect in ataxia-telangiectasia . Annu. Rev. Immunol. 15, 177? 202 (1997).
Smith, G. C. & Jackson, S. P. The DNA-dependent protein kinase . Genes Dev. 13, 916?934 (1999).
Abraham, R. T. Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr. Opin. Immunol. 10, 330?336 (1998).
Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677? 1679 (1998).
Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage . Science 281, 1674?1677 (1998).References 6 and 7 reported that ATM directly phosphorylates p53 and is activated by DNA damage.
Kim, S. T., Lim, D. S., Canman, C. E. & Kastan, M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538 ?37543 (1999).
Chan, D. W. et al. Purification and characterization of ATM from human placenta. A manganese-dependent, wortmannin-sensitive serine/threonine protein kinase . J. Biol. Chem. 275, 7803? 7810 (2000).
Dhand, R. et al. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 13 , 522?533 (1994).
Smith, G. C. et al. Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc. Natl Acad. Sci. USA 96, 11134?11139 (1999).
Gately, D. P., Hittle, J. C., Chan, G. K. & Yen, T. J. Characterization of ATM expression, localization, and associated DNA-dependent protein kinase activity. Mol. Biol. Cell 9, 2361?2374 (1998).
Taylor, A. M., Metcalfe, J. A., Thick, J. & Mak, Y. F. Leukemia and lymphoma in ataxia telangiectasia. Blood 87, 423?438 (1996).
Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 15?71 ( 1996).The generation of the first ataxia-telangiectasia-knockout mouse with many, but not all, of the features of the human disease.
Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397?402 (2000).
Komatsu, K., Yoshida, M. & Okumura, Y. Murine scid cells complement ataxia-telangiectasia cells and show a normal post-irradiation response of DNA synthesis. Int. J. Radiat. Biol. 63, 725?730 (1993).
Huang, L. C., Clarkin, K. C. & Wahl, G. M. p53-dependent cell cycle arrests are preserved in DNA-activated protein kinase-deficient mouse fibroblasts. Cancer Res. 56, 2940?2944 ( 1996).
Allalunis-Turner, J., Barron, G. M. & Day, R. S. Intact G2-phase checkpoint in cells of a human cell line lacking DNA-dependent protein kinase activity. Radiat. Res. 147, 284?287 ( 1997).
Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587?597 (1992). The first linkage of the ataxia-telangiectasia gene product with the p53 pathway.
Houldsworth, J. & Lavin, M. F. Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells. Nucleic Acids Res. 8, 3709?3720 (1980).
Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl Acad. Sci. USA 77, 7315?7317 ( 1980).
Beamish, H. & Lavin, M. F. Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int. J. Radiat. Biol. 65, 175?184 ( 1994).
O'Neill, T. et al. Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J. Biol. Chem. 275, 22719?22727 (2000).
Morgan, S. E. & Kastan, M. B. p53 and ATM: cell cycle, cell death, and cancer. Adv. Cancer Res. 71, 1?25 (1997).
Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51 , 6304?6311 (1991).
Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973?2983 ( 1998).
el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817?825 ( 1993).
Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325?334 (1997).
Siliciano, J. D. et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471? 3481 (1997).
Ashcroft, M., Kubbutat, M. H. & Vousden, K. H. Regulation of p53 function and stability by phosphorylation . Mol. Cell. Biol. 19, 1751? 1758 (1999).
Chehab, N. H., Malikzay, A., Stavridi, E. S. & Halazonetis, T. D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 13777?13782 (1999).
Dumaz, N. & Meek, D. W. Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2 . EMBO J. 18, 7002?7010 (1999).
Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831? 2841 (1998).
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296 ?299 (1997).
Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299?303 ( 1997).
Khosravi, R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 14973?14977 (1999).
Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 394: role in p53 activation by DNA damage. Genes Dev. (submitted).
Shieh, S. Y., Taya, Y. & Prives, C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 18, 1815?1823 ( 1999).
Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824? 1827 (2000).Development of Chk2-knockout mouse cells and linkage of Chk2 to p53 and the G1-checkpoint pathway.
Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278?288 ( 2000).
Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289?300 ( 2000).References 40 and 41 show that CHK2 phosphorylates p53 on serine 20 and contributes to its stabilization in an ATM-dependent manner.
Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893? 1897 (1998).Demonstration that CHK2 is phosphorylated and regulated by ATM.
Zhou, B. B. et al. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem. 275, 10342?10348 (2000).
Slebos, R. J. et al. p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc. Natl Acad. Sci. USA 91, 5320?5324 (1994).
Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540?2551 (1994).
Larner, J. M., Lee, H. & Hamlin, J. L. Radiation effects on DNA synthesis in a defined chromosomal replicon. Mol. Cell. Biol. 14, 1901? 1908 (1994).
Morgan, S. E., Lovly, C., Pandita, T. K., Shiloh, Y. & Kastan, M. B. Fragments of ATM which have dominant-negative or complementing activity. Mol. Cell. Biol. 17, 2020?2029 (1997).
Shiloh, Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet. 31, 635 ?662 (1997).
Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response . Cell 93, 477?486 (1998).
Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467?476 (1998).References 49 and 50 reported the cloning of the NBS1 gene and demonstrated its interactions with MRE11 and RAD50.
Paull, T. T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276?1288 (1999).
Lim, D. S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway . Nature 404, 613?617 (2000).Demonstration that ATM activation is not dependent on NBS1, but rather that ATM phosphorylates NBS1 and that this phosphorylation is important for the ionizing-radiation-induced S-phase checkpoint.
Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115? 119 (2000).
Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473? 477 (2000).
Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477 ?482 (2000).
Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577?587 ( 1999).
Zhong, Q. et al. Association of BRCA1 with the hRad50?hMre11?p95 complex and the DNA damage response. Science 285, 747?750 (1999).
Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927?939 ( 2000).
Paulovich, A. G. & Hartwell, L. H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841? 847 (1995).
Lindsay, H. D. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382?395 ( 1998).
Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664?1672 ( 1996).
Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162? 1166 (1999).
Scott, D., Spreadborough, A. R. & Roberts, S. A. Radiation-induced G2 delay and spontaneous chromosome aberrations in ataxia-telangiectasia homozygotes and heterozygotes. Int. J. Radiat. Biol. 66, S157?S163 (1994).
Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501?1505 (1997). Demonstration of a G2-checkpoint control mechanism involving 14-3-3 protein binding regulated by phosphorylation of CDC25C.
Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 14 , 1448?1459 (2000).
Takai, H. et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev. 14, 1439?1447 (2000).
Rhind, N. & Russell, P. Mitotic DNA damage and replication checkpoints in yeast. Curr. Opin. Cell Biol. 10, 749?758 (1998).
Walworth, N. C. & Bernards, R. Rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353?356 ( 1996).
Sanchez, Y. et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166?1171 (1999).
Sanchez, Y. et al. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271 , 357?360 (1996).
Xu, X. et al. Centrosome amplification and a defective G2?M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells . Mol. Cell 3, 389?395 (1999).
Verhaegh, G. W. et al. A gene that regulates DNA replication in response to DNA damage is located on human chromosome 4q. Am. J. Hum. Genet. 57, 1095?1103 (1995).
McKinnon, P. J. Ataxia-telangiectasia: an inherited disorder of ionizing-radiation sensitivity in man. Progress in the elucidation of the underlying biochemical defect. Hum. Genet. 75, 197?208 (1987).
Cornforth, M. N. & Bedford, J. S. On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science 227, 1589?1591 ( 1985).
Pandita, T. K. & Hittelman, W. N. Initial chromosome damage but not DNA damage is greater in ataxia telangiectasia cells. Radiat. Res. 130, 94?103 (1992).
Guo, C. Y., Wang, Y., Brautigan, D. L. & Larner, J. M. Histone H1 dephosphorylation is mediated through a radiation-induced signal transduction pathway dependent on ATM. J. Biol. Chem. 274, 18715?18720 (1999).
Kim, G. D. et al. Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase. J. Biol. Chem. 274, 31127?31130 (1999).
Karran, P. DNA double strand break repair in mammalian cells. Curr. Opin. Genet. Dev. 10, 144?150 (2000).
Meyn, M. S. High spontaneous intrachromosomal recombination rates in ataxia- telangiectasia . Science 260, 1327?1330 (1993).
Bishop, A. J., Barlow, C., Wynshaw-Boris, A. J. & Schiestl, R. H. Atm deficiency causes an increased frequency of intrachromosomal homologous recombination in mice. Cancer Res. 60, 395 ?399 (2000).
Luo, C. M. et al. High frequency and error-prone DNA recombination in ataxia telangiectasia cell lines. J. Biol. Chem. 271, 4497?4503 (1996).
Chen, G. et al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J. Biol. Chem. 274, 12748?12752 (1999).
Morrison, C. et al. The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J. 19, 463? 471 (2000).
Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells . Cell 88, 265?275 (1997).
Gowen, L. C., Avrutskaya, A. V., Latour, A. M., Koller, B. H. & Leadon, S. A. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281, 1009?1012 (1998).
Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511?518 (1999).
Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201?204 (2000).
Li, S. et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage responses. Nature 406, 210 ?215 (2000).
Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577?587 ( 1999).
Ivanov, E. L., Korolev, V. G. & Fabre, F. XRS2, a DNA repair gene of Saccharomyces cerevisiae , is needed for meiotic recombination. Genetics 132, 651?664 (1992).
Ajimura, M., Leem, S. H. & Ogawa, H. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133, 51?66 (1993).
Lee, Y., Barnes, D. E., Lindahl, T. & McKinnon, P. J. Defective neurogenesis resulting from DNA ligase IV deficiency requires ATM . Genes Dev. 14, 2576?2550 (2000).
Baskaran, R. et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387 , 516?519 (1997).
Lee, S. J., Dimtchev, A., Lavin, M. F., Dritschilo, A. & Jung, M. A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-κB. Oncogene 17, 1821?1826 ( 1998).
Lim, D. S. et al. ATM binds to β-adaptin in cytoplasmic vesicles. Proc. Natl Acad. Sci. USA 95, 10146? 10151 (1998).
Oka, A. & Takashima, S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci. Lett. 252, 195?198 (1998).
Barlow, C. et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc. Natl Acad. Sci. USA 97 , 871?876 (2000).
Yang, D. & Kastan, M. B. Participation of ATM in insulin signalling through phosphorylation of eIF-4E binding protein 1 (4E?BP1) . Nature Cell Biol. 2, 893? 898 (2000).
Meijer, M. & Smerdon, M. J. Accessing DNA damage in chromatin: insights from transcription. Bioessays 21, 596?603 (1999).
Gatti, R. A. et al. Genetic haplotyping of ataxia-telangiectasia families localizes the major gene to an approximately 850 kb region on chromosome 11q23. 1. Int. J. Radiat. Biol. 66, S57?S62 (1994).
Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152? 157 (1999).
Morrow, D. M., Tagle, D. A., Shiloh, Y., Collins, F. S. & Hieter, P. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82, 831?840 (1995).
Hari, K. L. et al. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82, 815?821 ( 1995).
Cimprich, K. A., Shin, T. B., Keith, C. T. & Schreiber, S. L. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein . Proc. Natl Acad. Sci. USA 93, 2850? 2855 (1996).
Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159?169 ( 1998).
Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389?10394 (2000).
Ahn, J.-Y., Schwarz, J. K., Piwnica?Worms, H. & Canman, C. E. Threonine 68 phosphorylation by ATM is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res. (in the press).
Gatei, M. et al. Role for ATM in DNA damage-induced phosphorylation of BRCA1 . Cancer Res. 15, 3299? 3304 (2000). [ PubMed]
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Glossary
- REPLICATION PROTEIN A
-
A single-stranded DNA-binding factor that is essential for DNA repair, recombination and replication.
- V(D)J RECOMBINATION
-
A specialized form of recombination that assembles the genes that encode lymphocyte antigen receptors from variable (V), diversity (D) and joining (J) gene segments. DNA double-strand breaks are introduced between the V, D and J segments and DNA repair proteins then join the segments together.
- CHK2
-
A serine/threonine protein kinase that has an important function in cell-cycle regulation in response to DNA damage.
- RADIORESISTANT DNA SYNTHESIS
-
A failure of the rapid decrease in DNA synthesis in ataxia-telangiectasia cells that occurs in normal cells after ionizing radiation.
- RESTRICTION POINT
-
A point late in the G1 stage of the cell cycle at which mammalian cells become committed to entry into S phase, even without other growth factors.
- REPLICON
-
A structural complex at which replication of DNA occurs.
- HYDROXYUREA
-
A inhibitor of ribonucleotide reductase that blocks replication during S phase by preventing nucleotide synthesis.
- MICROCEPHALY
-
An abnormally small head.
- ATAXIA
-
Dyscoordination of gait and other movements controlled by cerebellum.
- BRCA1
-
A tumour-suppressor gene that is linked to hereditary early onset of breast and ovarian cancer.
- PROPIDIUM IODIDE ASSAY
-
A fluorescent DNA-intercalating dye used to measure DNA content in flow cytometry assays.
- 14-3-3 PROTEIN
-
A regulatory protein that binds to phosphorylated forms of various proteins that are involved in signal transduction and cell-cycle control.
- BLASTOCYST
-
An early stage of embryonic development at which cells begin to commit to certain developmental lineages.
- HISTONE DEACETYLASE
-
An enzyme that removes the acetyl groups of core histones; its activity has an important function in transcriptional regulation and cell-cycle progression through alterations in chromatin structure.
Rights and permissions
About this article
Cite this article
Kastan, M., Lim, Ds. The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1, 179–186 (2000). https://doi.org/10.1038/35043058
Issue Date:
DOI: https://doi.org/10.1038/35043058
This article is cited by
-
Trypanosoma cruzi infection induces DNA double-strand breaks and activates DNA damage response pathway in host epithelial cells
Scientific Reports (2024)
-
Targeting DDX11 promotes PARP inhibitor sensitivity in hepatocellular carcinoma by attenuating BRCA2-RAD51 mediated homologous recombination
Oncogene (2024)
-
The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies
Molecular Neurobiology (2022)
-
PRL3 induces polyploid giant cancer cells eliminated by PRL3-zumab to reduce tumor relapse
Communications Biology (2021)
-
The role of the p90 ribosomal S6 kinase family in prostate cancer progression and therapy resistance
Oncogene (2021)