Abstract
Glycogen synthase kinase 3 (GSK3) was initially described as a key enzyme involved in glycogen metabolism, but is now known to regulate a diverse array of cell functions. The study of the substrate specificity and regulation of GSK3 activity has been important in the quest for therapeutic intervention.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






References
Van Schaftingen, E., Jett, M. F., Hue, L. & Hers, H. G. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc. Natl Acad. Sci. USA 78, 3483?3486 (1981).
Embi, N., Rylatt, D. B. & Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle; separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107, 519?527 (1980).
Parker, P. J. J., Caudwell, F. B. & Cohen, P. Glycogen synthase from rabbit skeletal muscle: effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur. J. Biochem. 130, 227?234 (1983).
Hughes, K., Ramakrishna, S., Benjamin, W. B. & Woodgett, J. R. Identification of multifunctional ATP-citrate lyase kinase as the α-isoform of glycogen synthase kinase-3. Biochem. J. 288, 309?314 (1992).
Welsh, G. I. & Proud, C. G. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem. J. 294, 625?629 (1993).
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785?789 (1995).
Alessi, D. R. et al. Characterisation of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261?269 (1997).
Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W. & Roach, P. J. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J. Biol. Chem. 262, 14042?14048 (1987).
Frame, S., Cohen, P. & Biondi, R. M. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321?1327 (2001).
Dajani, R. et al. Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105, 721?732 (2001).
ter Haar, E. et al. Structure of GSK3β reveals a primed phosphorylation mechanism. Nature Struct. Biol. 8, 593?596 (2001).
Hughes, K., Nikolakaki, E., Plyte, S. E., Totty, N. F. & Woodgett, J. R. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J. 12, 803?808 (1993).
Stambolic, V. & Woodgett, J. R. Mitogen inactivation of glycogen synthase kinase-3β in intact cells via serine 9 phosphorylation. Biochem. J. 303, 701?704 (1994).
Shaw, M. & Cohen, P. Role of protein kinase B and the MAP kinase cascade in mediating the EGF-dependent inhibition of glycogen synthase kinase 3 in Swiss 3T3 cells. FEBS Lett. 461, 120?124 (1999).
Armstrong, J. L., Bonavaud, S. M., Toole, B. J. & Yeaman, S. J. Regulation of glycogen synthesis by amino acids in cultured human muscle cells. J. Biol. Chem. 276, 952?956 (2001).
Fang, X. et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl Acad. Sci. USA 97, 11960?11965 (2000).
Li, M. et al. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3β. Mol. Cell. Biol. 20, 9356?9363 (2000).
Frame, S. & Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1?16 (2001).
Alt, J. R., Cleveland, J. L., Hannink, M. & Diehl, J. A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 14, 3102?3114 (2000).
Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499?3511 (1998).
Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501?2514 (2000).
Nikolakaki, E., Coffer, P. J., Hemelsoet, R., Woodgett, J. R. & Defize, L. H. Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene 8, 833?840 (1993).
Sabbah, M., Courilleau, D., Mester, J. & Redeuilh, G. Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc. Natl Acad. Sci. USA 96, 11217?11222 (1999).
Siegfried, E., Chou, T. B. & Perrimon, N. Wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 71, 1167?1179 (1992).
Pierce, S. B. & Kimelman, D. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121, 755?765 (1995).
He, X., Saint-Jeannet, J. P., Woodgett, J. R., Varmus, H. E. & Dawid, I. B. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617?622 (1995).
Kao, K. R., Masui, Y. & Elinson, R. P. Lithium-induced respecification of pattern in Xenopus laevis embryos. Nature 322, 371?373 (1986).
Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455?8459 (1996).
Stambolic, V., Ruel, L. & Woodgett, J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664?1668 (1996).
Zeng, L. et al. The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181?192 (1997).
Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371?1384 (1998).
Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol. 8, 573?581 (1998).
Li, L. et al. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 18, 4233?4240 (1999).
Yost, C. et al. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93, 1031?1041 (1998).
Ding, V. W., Chen, R. H. & McCormick, F. Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J. Biol. Chem. 275, 32475?32481 (2000).
Ruel, L., Stambolic, V., Ali, A., Manoukian, A. S. & Woodgett, J. R. Regulation of the protein kinase activity of Shaggy (Zeste-white3) by components of the Wingless pathway in Drosophila cells and embryos. J. Biol. Chem. 274, 21790?21796 (1999).
Thomas, G. M. et al. A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and β-catenin. FEBS Lett. 458, 247?251 (1999).
Hoeflich, K. P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406, 86?90 (2000).
Eldar-Finkelman, H., Schreyer, S. A., Shinohara, M. M., LeBoeuf, R. C. & Krebs, E. G. Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice. Diabetes 48, 1662?1666 (1999).
Coghlan, M. P. et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 7, 793?803 (2000).
Lochhead, P. A., Coghlan, M., Rice, S. Q. J. & Sutherland, C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression. Diabetes 50, 1?10 (2001).
Norman, P. Emerging fundamental themes in modern medicinal chemistry. Drug News Perspect. 14, 242?247 (2001).
Yoshida, H. & Ihara, Y. Tau in paired helical filaments is functionally distinct from fetal tau: assembly incompetence of paired helical filament-tau. J. Neurochem. 61, 1183?1186 (1993).
Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837?1851 (2000).
Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931?5942 (1999).
Woods, Y. et al. The kinase DYRK phosphorylates protein synthesis initiation factor eIF2Bɛ at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem. J. 355, 609?615 (2001).
Pap, M. & Cooper, G. M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem. 273, 19929?19932 (1998).
Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P. & Anderton, B. H. Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58?62 (1992).
Mandelkow, E. M. et al. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett. 314, 315?321 (1992).
Munoz-Montano, J. R., Moreno, F. J., Avila, J. & Diaz-Nido, J. Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett. 411, 183?188 (1997).
Bramblett, G. T. et al. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10, 1089?1099 (1993).
Cross, D. A. et al. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem. 77, 94?102 (2001).
Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311?320 (2000).
Weng, Q. P., Andrabi, K., Kozlowski, M. T., Grove, J. R. & Avruch, J. Multiple independent inputs are required for activation of the p70 S6 kinase. Mol. Cell. Biol. 15, 2333?2340 (1995).
Kim, L. & Kimmel, A. R. GSK3, a master switch regulating cell-fate specification and tumorigenesis. Curr. Opin. Genet. Dev. 10, 508?514 (2000).
Seidensticker, M. J. & Behrens, J. Biochemical interactions in the Wnt pathway. Biochim. Biophys. Acta 1495, 168?182 (2000).
Williams, M. R. et al. The role of 3-phosphoinositide-depen-dent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr. Biol. 10, 439?448 (2000).
Friedman, D. L. & Larner, J. Studies on UDPG-α-glucan transglucosylase III. Interconversion of two forms of muscle UDPG-α-glucan transglucosylase by a phosphorylation?dephosphorylation reaction sequence. Biochemistry 2, 669?675 (1963).
Craig, J. W. & Larner, J. Influence of epinephrine and insulin on uridine diphosphate glucose-α-glucan transferase and phosphorylase in muscle. Nature 202, 971?973 (1964).
Cohen, P. The hormonal control of glycogen metabolism in mammalian muscle by multivalent phosphorylation. 'The Fifteenth Colworth Medal Lecture'. Biochem. Soc. Trans. 7, 459?480 (1978).
Woodgett, J. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 2431?2438 (1990).
Boyle, W. J. et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64, 573?584 (1991).
Sutherland, C. & Cohen, P. The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett. 338, 37?42 (1994).
Cross, D. A. et al. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303, 21?26 (1994).
Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443?1454 (1996).
Rubinfeld, B. et al. Binding of GSK3β to the APC?β-catenin complex and regulation of complex assembly. Science 272, 1023?1026 (1996).
Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541?6551 (1996).
Acknowledgements
Our research is supported by the UK Medical Research Council, Diabetes UK, The Royal Society, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, NovoNordisk and Pfizer. We apologize to the authors whose papers could not be referenced because of space restrictions.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Related links
Related links
DATABASES
Rights and permissions
About this article
Cite this article
Cohen, P., Frame, S. The renaissance of GSK3. Nat Rev Mol Cell Biol 2, 769–776 (2001). https://doi.org/10.1038/35096075
Issue Date:
DOI: https://doi.org/10.1038/35096075