Abstract
THE Sxr (sex-reversed) region, a fragment of the Y chromosome short arm, can cause chromosomally female XXSxr or XSxrO mice to develop as sterile males1–3. The original Sxr region, termed Sxra, encodes: Tdy, the primary sex-determining gene; Hya, the controlling or structural locus for the minor transplantation antigen H–Y (ref. 4); gene(s) controlling the expression of the serologically detected male antigen (SDMA)5; Spy, a gene(s) required for the survival and proliferation of A spermatogonia during spermatogenesis6,7; Zfy-l/Zfy-2, zinc-finger-containing genes of unknown function8; and Sry, which is probably identical to Tdy (ref. 9). A deletion variant10 of Sxra, termed Sxrb, which lacks Hya, SDMA expression, Spy and some Zfy-2 sequences, makes positional cloning of these genes possible. We report here the isolation of a new testis-specific gene, Sby, mapping to the DNA deleted from the Sxrb region (the ΔSxrb interval). Sby has extensive homology to the X-linked human ubiquitin-activating enzyme El (ref. 11). The critical role of this enzyme in nuclear DNA replication12 together with the testis-specific expression of Sby suggests Sby as a candidate for the spermatogenic gene Spy.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Cattanach, B. M., Pollard, C. E. & Hawkes, S. G. Cytogenetics 10, 318–337 (1971).
Roberts, C. et al. Proc. natn. Acad Sci. U.S.A. 85, 6446–6449 (1988).
McLaren, A. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6442–6445 (1988).
Simpson, E., McLaren, A., Chandler, P. & Tomonari, K. Transplantation 37, 17–21 (1984).
Goldberg, E. H., McLaren, A. & Reilly, B. J. Reprod. Immun. (in the press).
Burgoyne, P. S., Levy, E. R. & McLaren, A. Nature 320, 170–172 (1986).
Sutcliffe, M. J. & Burgoyne, P. S. Development 107, 373–380 (1989).
Mardon, G. et al. Science 243, 78–80 (1989).
Gubbay, J. Nature 346, 245–250 (1990).
McLaren, A., Simpson, E., Tomonari, K., Chandler, P. & Hogg, H. Nature 312, 552–555 (1984).
Handley, P. M., Muekler, M., Siegel, N. R., Ciechanover, A. & Schwartz, A. L. Proc. natn. Acad. Sci. U.S.A. 88, 258–262 (1991).
Mayer, A., Gropper, R., Schwartz, A. L. & Ciechanover, A. J. biol. Chem. 264, 2060–2068 (1989).
Mitchell, M. J. & Bishop, C. E. Genomics (in the press).
Bishop, C. E. et al. Development 101S, 167–175 (1987).
Zacksenhaus, E. & Sheinin, R. EMBO J. 9, 2923–2929 (1990).
Hatfield, P. M., Callis, J. & Vierstra, R. D. J. biol. Chem. 265, 15813–15817 (1990).
McGrath, J. P., Jentsch, S. & Varshavsky, A. EMBO J. 10, 227–236 (1991).
Zacksenhaus, E., Sheinin, R. & Wang, H. S. Cytogenet. Cell Genet. 53, 20–22 (1990).
Simpson, E. M. & Page, D. C. Genomics 11, 601–608 (1991).
Tucker, P. K., Phillips, K. S. & Lundrigan, B. Mammalian Genome (in the press).
Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad Sci. U.S.A. 74, 5463–5467 (1977).
Devereux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).
Frohman, M. A., Dush, M. K. & Martin, G. R. Proc. natn. Acad. Sci. U.S.A. 85, 8998–9002 (1988).
Frohman, M. A. in PCR Protocols (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) (Academic, San Diego, 1990).
Chomczynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).
Avner, P. R. et al. Proc. natn. Acad. Sci. U.S.A. 84, 5330–5334 (1987).
Amar, L. C. et al. Genomics 2, 220–230 (1988).
Mitchell, M. J. et al. Genetics 121, 803–809 (1989).
Church, G. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).
Feinberg, A. P. & Vogelstein, B. Analyt. Biochem. 132, 6–13 (1983).
Zabel, B. U., Naylor, S. L., Sakaguchi, A. Y., Bell, G. I. & Shows, T. B. Proc. natn. Acad. Sci. U.S.A. 80, 6932–6936 (1983).
Harper, M. E. & Saunders, G. F., Chromosoma 83, 431–439 (1981).
Handley, P. M., Muekler, M., Siegel, N. R., Ciechanover, A. & Schwartz, A. L. Proc. natn. Acad. Sci. U.S.A. 88, 7456 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mitchell, M., Woods, D., Tucker, P. et al. Homology of a candidate spermatogenic gene from the mouse Y chromosome to the ubiquitin-activating enzyme El. Nature 354, 483–486 (1991). https://doi.org/10.1038/354483a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/354483a0
This article is cited by
-
Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode
BMC Plant Biology (2018)
-
A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues
Biology of Sex Differences (2016)
-
Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals
Genome Biology (2015)
-
Heritable artificial sex chromosomes in the medaka, Oryzias latipes
Heredity (2010)
-
No partial DAZ deletions but frequent gene conversion events on the Y chromosome of fertile men
Journal of Assisted Reproduction and Genetics (2005)