Abstract
KRUPPEL (KR), a Drosophila zinc finger-type1 transcription factor2–4, can both activate and repress gene expression through interaction with a single DNA-binding site4. The opposite regulatory effects of KR are concentration-dependent, and they require distinct portions of KR such as the N-terminal region for activation and the C-terminal region for repression4. Here we show that KR is able to form homodimers through sequences located within the C terminus. When these sequences were fused to separated functional parts of the yeast transcription factor GAL45, they reconstituted a functional transcriptional activator on dimerization in vivo. Our results suggest that the KR monomer is a transcriptional activator. At higher concentration KR forms a homodimer and becomes a represser that functions through the same target sequences as the activator.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rosenberg, U. et al. Nature 319, 336–339 (1986).
Licht, I. D., Grossel, M. J., Figge, I. & Hansen, U. Nature 346, 76–79 (1990).
Zuo, P. et al. Genes Dev. 5, 254–264 (1991).
Sauer, F. & Jäckle, H. Nature 353, 563–566 (1991).
Ma, J. & Ptashne, M. Cell 48, 847–853 (1987).
Pankratz, M. J., Hoch, M., Seifert, E. & Jäckle, H. Nature 341, 337–340 (1989).
Courey, A. J. et al. Cell 59, 827–836 (1989).
Benson, M. & Pirotta, V. EMBO J. 6, 1387–1392 (1987).
Maniatis, T., Fritsch, E. F. & Sambrook, J. in Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1990).
Fields, S. & Song, O. Nature 340, 245–246 (1989).
Pankratz, M. J. & Jäckle, H. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1993).
Small, S. et al. Genes Dev. 5, 827–839 (1991).
Stanojevic, D., Small, S. & Levine, M. Science 254, 1385–1387 (1991).
Han, K. & Manley, L. Genes Dev. 7, 491–503 (1993).
Roeder, R. G. Trends biochem. Sci. 16, 402–408 (1991).
Sorger, P. K. & Pelham, H. R. B. EMBO J. 6, 3035–3041 (1987).
Gaul, U. & Jäckle, H. Cell 50, 639–647 (1987).
Ingraham, H. A. et al. Cell 61, 1021–1033 (1990).
Heberlein, U., England, B. & Tjian, R. Cell 41, 965–977 (1985).
Heberlein, U. & Tjian, R. Nature 331, 410–415 (1988).
Krasnow, M. A., Saffman, E. E., Kornfeld, K. & Hogness, D. S. Cell 57, 1031–1043 (1989).
Schneider, I. J. Embryol. exp. Morphol. 27, 353–365 (1972).
Ma, J. & Ptashne, M. Cell 51, 113–119 (1987).
Kakidani, H. & Ptashne, M. Cell 52, 161–167 (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sauer, F., Jäckle, H. Dimerization and the control of transcription by Krüppel. Nature 364, 454–457 (1993). https://doi.org/10.1038/364454a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/364454a0