Abstract
THE Notch locus of Drosophila melanogaster encodes a 2,703-amino-acid transmembrane protein required for a variety of developmental processes, including neurogenesis, oogenesis and ommatidial assembly1,2. The Notch protein contains a large extracellular domain of 36 epidermal growth factor-like repeats as well as three Notch/Lin-12 repeats and an intracellular domain with 6 CdclO/ ankyrin repeats, motifs that are highly conserved in several vertebrate Notch homologues3–9. Truncation of the extracellular domain of the Drosophila Notch protein produces an activated receptor, as judged by its ability to cause phenotypes similar to gain-of-function alleles or duplications of the Notch locus10. Equivalent truncations of vertebrate Notch-related proteins have been associated with malignant neoplasms and other developmental abnormalities8,11–13. We present here an analysis of activated Notch function at single-cell resolution in the Drosophila compound eye. We find that overexpression of full-length Notch in defined cell types has no apparent effects but that overexpression of activated Notch in the same cells transiently blocks their proper cell-fate commitment, causing them either to adopt incorrect cell fates or to differentiate incompletely. Moreover, an activated Notch protein lacking the transmembrane domain is translocated to the nucleus, raising the possibility that Notch may participate directly in nuclear events.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Artavanis-Tsakonas, S. & Simpson, P. Trends Genet. 7, 403–408 (1991).
Greenwald, I. & Rubin, G. M. Cell 68, 271–281 (1992).
Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Cell 43, 567–581 (1985).
Kidd, S., Kelley, M. R. & Young, M. W. Molec. cell. Biol. 6, 3094–3108 (1986).
Coffman, C., Harris, W. & Kintner, C. Science 249, 1438–1441 (1990).
Weinmaster, G., Roberts, V. J. & Lemke, G. Development 113, 199–205 (1991).
Franco del Amo, F. et al. Development 115, 737–744 (1992).
Ellisen, L. W. et al. Cell 66, 649–661 (1991).
Stifani, S., Blaumueller, C. M., Redhead, N. J., Hill, R. E. & Artavanis-Tsakonas, S. Nature Genet. 2, 119–127 (1992).
Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Cell 74, 319–329 (1993).
Robbins, J., Blondel, B. J., Gallahan, D. & Callahan, R. J. Virol. 66, 2594–2599 (1992).
Jhappan, C. et al. Genes Dev. 6, 345–355 (1992).
Coffman, C. R., Skoglund, P., Harris, W. A. & Kintner, C. R. Cell 73, 659–671 (1993).
Tomlinson, A., Bowtell, D. D. L., Hafen, E. & Rubin, G. M. Cell 51, 143–150 (1987).
Bowtell, D. D. L., Kimmel, B. E., Simon, M. A. & Rubin, G. M. Proc. natn. Acad. Sci. U.S.A. 86, 6245–6249 (1989).
Fehon, R. G., Johansen, K., Rebay, I. & Artavanis-Tsakonas, S. J. Cell Biol. 113, 657–669 (1991).
Heitzler, P. & Simpson, P. Cell 64, 1083–1092 (1991).
Mlodzik, M., Hiromi, Y., Weber, U., Goodman, C. S. & Rubin, G. M. Cell 60, 211–224 (1990).
Heberlein, U., Mlodzik, M. & Rubin, G. M. Development 112, 703–712 (1991).
Rubin, G. M. Trends Genet. 7, 372–377 (1991).
Tomlinson, A. & Ready, D. F. Devl Biol. 123, 264–275 (1987).
Reinke, R. & Zipursky, S. L. Cell 55, 321–330 (1988).
Carthew, R. W. & Rubin, G. M. Cell 63, 561–577 (1990).
Smoller, D. et al. Genes Dev. 4, 1688–1700 (1990).
Delidakis, C., Preiss, A., Hartley, D. A. & Artavanis-Tsakonas, S. Genetics 129, 803–823 (1991).
Bier, E., Ackerman, L., Barbel, S., Jan, L. & Jan, Y. N. Science 240, 913–916 (1988).
Robinow, S. & White, K. J. Neurobiol. 22, 443–461 (1991).
Fortini, M. E., Simon, M. A. & Rubin, G. M. Nature 355, 559–561 (1992).
Fortini, M. E. & Rubin, G. M. Genes Dev. 4, 444–463 (1990).
Gaul, U., Mardon, G. & Rubin, G. M. Cell 68, 1007–1019 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fortini, M., Rebay, I., Caron, L. et al. An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 365, 555–557 (1993). https://doi.org/10.1038/365555a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/365555a0
This article is cited by
-
Proliferating Neural Progenitors in the Developing CNS of Zebrafish Require Jagged2 and Jagged1b
Molecules and Cells (2010)
-
Notch activity opposes ras-induced differentiation during the second mitotic wave of the developing Drosophilaeye
BMC Developmental Biology (2006)
-
Notch signalling in vertebrate neural development
Nature Reviews Neuroscience (2006)
-
Delta activity independent of its activity as a ligand of Notch
BMC Developmental Biology (2005)