Abstract
DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2–4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. Nature 331, 609–611 (1988).
Broecker, W. S. & Peng, T. H. Globl Biogeochem. Cycles 1, 15–29 (1987).
Boyle, E. A. Nature 331, 55–56 (1988).
Emerson, S. R. & Archer, D. E. Paleoceanography 7, 319–332 (1992).
Emerson, S. & Bender, M. L. J. mar. Res. 39, 139–162 (1981).
Archer, D. E. J. geophys. Res. 96, 17037–17050 (1991).
Heinze, C., Maier-Reimer, E. & Winn, K. Paleoceanography 6, 395–430 (1991).
Maier-Reimer, E. Globl Biogeochem. Cycles 7, 645–678 (1993).
Milliman, J. D. Marine Carbonates 1–375 (Springer, Heidelberg, 1974).
Davies, T. A. & Worsley, T. R. Paleoenvironmental Implications of Oceanic Carbonate Sedimentation Rates, 169–179 (Spec. Publ. No. 32, Soc. Econ. Paleontologists and Mineralogists, Tulsa, 1981).
Archer, D., Emerson, S. & Reimers, C. Geochim. cosmochim. Acta 53, 2831–2846 (1989).
Berger, W. H. Naturwissenschaften 69, 87–88 (1982).
Opdyke, B. N. & Walker, J. C. G. Geology 20, 733–736 (1992).
Berger, W. H. & Keir, R. S. in Climate Processes and Climate Sensitivity (eds Hansen J. E. & Takahashi, T.) 337–351 (Am. geophys. Un., Washington DC, 1984).
Peterson, L. C. & Prell, W. L. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archaen to Present (eds Sundquist E. T. & Broecker, W. S.) 251–269 (Am. Geophys. Un., Washington DC, 1985).
Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 329, 408–414 (1987).
Keir, R. S. Paleoooceangraphy 5, 253–277 (1990).
Sarnthein, M., Winn, K., Duplessy, J. C. & Fontugne, M. R. Paleoceanography 3, 361–399 (1988).
Lyle, M. et al. Paleoceanography 3, 39–59 (1988).
Lyle, M. Nature 335, 529–532 (1988).
Mix, A. C. Nature 337, 541–544 (1989). (OK?)
Lisitzin, A. P. in The Micropaleontology of Oceans (eds Funnell, B. M. & Reidel, W. R.) 173–195 (Cambridge Univ. Press, London, 1971).
Howard, W. R. & Prell, W. L. Paleoceanography 7, 79–118 (1992).
Spivack, A. J., You, C.-F. & Smith, H. J. Nature 363, 149–151 (1993).
Broecker, W. S. & Peng, T.-H. Globl Biogeochem. Cycles 3, 215–239 (1989).
Sarmiento, J. L., Toggweiler, J. R. & Najjar, R. Phil. Trans. R. Soc. Lond. A 325, 3–21 (1988).
Leuenberger, M., Seigenthaler, U. & Langway, C. C. Nature 357, 488–490 (1992).
Bacastow, R. & Maier-Reimer, E. Clim. Dynam. 4, 95–125 (1990).
Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. M. Deep-Sea Res. 34, 267–285 (1987).
Keir, R. S. Geochim. cosmochim. Acta 44, 241–252 (1980).
Biscaye, P. E., Kolla, V. & Turekian, K. K. J. geophys. Res. 81, 2595–2603 (1976).
Berger, W. H., Adelseck, C. G. & Mayer, L. A. J. geophys. Res. 81, 2617–2672 (1976).
Kolla, V., Bé, A. W. H. & Biscaye, P. J. geophys. Res. 81, 2605–2616 (1976).
Hemming, N. G. & Hanson, G. N. Geochim. cosmochim. Acta 56, 537–544 (1992).
Takahashi, T., Broecker, W. S., Bainbridge, A. C. & Weiss, R. F. Tech. Rep. No. 1, CU-1-80 (Lamont-Doherty Geological Observatory, Palisades, New York, 1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Archer, D., Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994). https://doi.org/10.1038/367260a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/367260a0
This article is cited by
-
Computationally characterizing the diffusive boundary layer in lakes and reservoirs
Journal of Soils and Sediments (2024)
-
Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean
Nature Communications (2023)
-
Cyclic evolution of phytoplankton forced by changes in tropical seasonality
Nature (2022)
-
Deep Atlantic Ocean carbon storage and the rise of 100,000-year glacial cycles
Nature Geoscience (2019)
-
Influence of surface ocean density on planktonic foraminifera calcification
Scientific Reports (2019)