Abstract
THE eastern equatorial Pacific Ocean (EEP) today sustains up to 30% of global marine productivity1, and the region is one of the largest and most variable marine sources of CO2 to the atmosphere2. This variability is largely controlled by the balance between the physical input of nutrients to the surface ocean and their removal by biological assimilation―the relative nutrient utilization―but the spatial and temporal variability of this balance are poorly understood. Here we use the 15N/14N ratio in sedimentary marine organic matter to show strong spatial gradients in relative nitrate utilization throughout the modern EEP. We interpret down-core decline in this ratio through the Last Glacial Maximum (12-24 kyr ago) as a decrease in relative nitrate utilization; the increase in nitrate supply to surface waters due to upwelling during this period was greater than the apparent increase in nitrogen removal by organic matter export out of surface waters. This interpretation is consistent with cooler sea surface temperatures3 and a higher CO2 flux to the atmosphere4,5 during the Last Glacial Maximum, indicating that the EEP surface waters have remained enriched in nutrients, and have not acted as a net sink for CO2, for at least the past 30,000 years.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chavez, F. P. & Barber, R. T. Deep-Sea Res. 34, 1229–1243 (1987).
Murray, J. W., Barber, R. T., Roman, M. R., Bacon, M. P. & Feely, R. A. Science 266, 58–65 (1994).
Lyle, M. W., Prahl, F. G. & Sparrow, M. A. Nature 355, 812–814 (1992).
Pedersen, T. F., Nielsen, B. & Pickering, M. Paleoceanography 6, 657–677 (1991).
Jasper, J. P., Hayes, J. M., Mix, A. C. & Prahl, F. G. Paleoceanography 9, 781–798 (1994).
François, R., Altabet, M. A. & Burckle, L. H. Paleoceanography 7, 589–606 (1992).
Altabet, M. A. & François, R. Globl biogeochem. Cycles 8, 103–116 (1994).
Miyake, Y. & Wada, E. Rec. Oceanogr. Works Jap. 9, 37–53 (1967).
Altabet, M. A. Deep-Sea Res. 35, 535–554 (1988).
Wada, E. & Hattori, A. Nitrogen in the Sea: Forms, Abundances, and Rate Processes 1–208 (CRC, Boca Raton, 1991).
Dugdale, R. C., Wilkerson, F. P., Barber, R. T. & Chavez, F. P. J. geophys. Res. 97, 681–686 (1992).
Barber, R. T. & Chavez, F. P. Limnol. Oceanogr. 36, 1803–1815 (1991).
Pena, A., Lewis, M. R. & Cullen, J. J. J. geophys. Res. 99, 14255–14268 (1994).
Liu, K.-K. & Kaplan, I. R. Limnol. Oceanogr. 34, 820–830 (1989).
Cline, J. D. & Kaplan, I. R. Mar. Chem. 3, 271–299 (1975).
Altabet, M. A., Deuser, W. G., Honjo, S. & Stienen, C. Nature 354, 136–139 (1991).
Shemesh, A., Macko, S. A., Charles, C. D. & Rau, G. H. Science 262, 407–410 (1993).
Shäfer, P. Ittekkot, V. Naturwissenshaften 80, 511–513 (1993).
Altabet, M. A. & François, R. in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change (eds Zahn, R., Pedersen, T. F., Kaminski, M. A. & Labeyrie, L. D.) 281–306 (Springer, Berlin, 1994).
DeNiro, M. J. & Epstein, S. Geochim. cosmochim. Acta 45, 341–351 (1981).
Altabet, M. A., François, R. & Smith, C. Eos (abstr.) 75, 397 (1994).
Calvert, S. E., Nielsen, B. & Fontugne, M. R. Nature 359, 223–225 (1992).
Liu, K. K. thesis, Univ. California, (1979).
Staresinic, N., Farrington, J., Gagosian, R. B., Clifford, C. H. & Hulburt, E. M. in Coastal Upwelling (eds Suess, E. & Thiede, J.) 225–240 (Plenum, New York, 1983).
Arrhenius, G. Paleogeogr. Paleoclimatol. Paleoecol. 67, 119–146 (1988).
Pedersen, T. F., Pickering, N., Vogel, J. S., Southon, J. N. & Nelson, D. E. Paleoceanography 3, 157–168 (1988).
Lyle, M. et al. Paleoceanography 3, 39–59 (1988).
Martin, J. Paleoceanography 5, 1–13 (1990).
Altabet, M. A., François, R., Murray, D. W. & Prell, W. L. Nature 373, 506–509 (1995).
Montoya, J. P. in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change (eds Zahn, R., Pedersen, T. F., Kaminski, M. & Labeyrie, L. D.) 259–279 (Springer, Heidelberg, 1994).
Altabet, M. A. & Curry, W. B. Global biogeochem. Cycles 3, 107–119 (1989).
Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Nature 376, 755–758 (1995).
Saino, T. & Hattori, A. Nature 283, 752–754 (1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Farrell, J., Pedersen, T., Calvert, S. et al. Glacialá¤-interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377, 514–517 (1995). https://doi.org/10.1038/377514a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/377514a0
This article is cited by
-
Nitrogen isotopic fractionation of particulate organic matter production and remineralization in the Prydz Bay and its adjacent areas
Acta Oceanologica Sinica (2020)
-
Dietary ontogeny of the blue shark, Prionace glauca, based on the analysis of δ13C and δ15N in vertebrae
Marine Biology (2019)
-
From ecologically equivalent individuals to contrasting colonies: quantifying isotopic niche and individual foraging specialization in an endangered oceanic seabird
Marine Biology (2019)
-
Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific
Nature (2018)
-
Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific
Journal of Oceanography (2016)