Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral exploitation and subversion of the immune system through chemokine mimicry

Abstract

The chemokine superfamily of leukocyte chemo-attractants coordinates development and deploy-ment of the immune system by signaling through a family of G protein–coupled receptors. The importance of this system to antimicrobial host defense has been supported by the discovery of numerous herpesviruses and poxviruses that encode chemokine mimics able to block chemo-kine action. However, specific herpesviruses and lentiviruses can also exploit the immune system through chemokine mimicry, for example, to facilitate viral dissemination or, as in the case of HIV-1, to directly infect leukocyte target cells. The study of viral mimicry of chemokines and chemokine receptors is providing important new concepts in viral immunopathogenesis, new anti-inflammatory drug leads and new targets and concepts for antiviral drug and vaccine development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential combinatorial effects of chemokine mimicry on viral immunopathogenesis.

Similar content being viewed by others

References

  1. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Murphy, P. M. et al. International Union of Pharmacology nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145–176 (2000).

    CAS  PubMed  Google Scholar 

  3. Tulman, E. R. et al. The genome of a very virulent Marek's disease virus. J. Virol. 74, 7980–7988 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boshoff, C. et al. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278, 290–294 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Spriggs, M. K. One step ahead of the game: viral immunomodulatory molecules. Annu. Rev. Immunol. 14, 101–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. McFadden, G. & Murphy, P. M. Host-related immunomodulators encoded by DNA viruses. Curr. Opin. Microbiol. 3, 371–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Berger, E. A., Murphy, P. M. & Farber, J. M. Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism and disease. Ann. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  Google Scholar 

  8. Littman, D. R. Chemokine receptors: keys to AIDS pathogenesis? Cell 93, 677–680 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Baba, M. A small-molecule, non-peptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl Acad. Sci. USA 96, 5698–5703 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. LaCasse, R. A. et al. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. Science 283, 357–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Weissman, D. et al. Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389, 981–985 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Davis, C. B. et al. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J. Exp. Med. 186, 1793–1798 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iyengar, S., Schwartz, D. H. & Hildreth, J. E. T cell-tropic HIV gp120 mediates CD4 and CD8 cell chemotaxis through CXCR4 independent of CD4: implications for HIV pathogenesis. J. Immunol. 162, 6263–6267 (1999).

    CAS  PubMed  Google Scholar 

  14. Hesselgesser, J. et al. Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 α is mediated by the chemokine receptor CXCR4. Curr. Biol. 8, 595–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Herbein, G. et al. Apoptosis of CD8(+) T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 395, 189–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Wyatt, R. & Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Berger, E. A. et al. A new classification for HIV-1. Nature 391, 240 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, Z. et al. Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proc. Natl Acad. Sci. USA 94, 6426–6431 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Michael, N. L. et al. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 Δ32. J. Virol. 72, 6040–6047 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Y. J. et al. Use of coreceptors other than CCR5 by non-syncytium-inducing adult and pediatric isolates of human immunodeficiency virus type 1 is rare in vitro. J. Virol. 72, 9337–9344 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, B. et al. Influence of the CCR2-V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. J. Virol. 72, 7450–7458 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. He, J. et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, S. et al. CCR8 on human thymocytes functions as a Human Immunodeficiency Virus type 1 coreceptor. J. Virol. 74, 6946–6952 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faure, S. et al. Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 287, 2274–2277 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. McDermott D. A. et al. Technical Comment: Genetic polymorphism in the HIV coreceptor CX3CR1 and risk of HIV disease. Science 290, 5499 (2000).

    Article  Google Scholar 

  29. Rizzuto, C. D. et al. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280, 1949–1953 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Berson, J. F. & Doms, R. W. Structure-function studies of the HIV-1 coreceptors. Semin. Immunol. 10, 237–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Speck, R. F. et al. Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop. J. Virol. 71, 7136–7139 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Salzwedel, K., Smith, E. D., Dey, B. & Berger, E. A. Sequential CD4-coreceptor interactions in human immunodeficiency virus type 1 Env function: soluble CD4 activates Env for coreceptor-dependent fusion and reveals blocking activities of antibodies against cryptic conserved epitopes on gp120. J. Virol. 74, 326–333 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao, H. et al. Constitutive cell surface association between CD4 and CCR5. Proc. Natl Acad. Sci. USA 96, 7496–7501 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lapham, C. K., Zaitseva, M. B., Lee, S., Romanstseva, T. & Golding, H. Fusion of monocytes and macrophages with HIV-1 correlates with biochemical properties of CXCR4 and CCR5. Nature Med. 5, 303–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Vila-Coro, A. J. et al. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc. Natl Acad. Sci. USA 97, 3388–3393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez-Frade, J. M. et al. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Natl Acad. Sci. USA 96, 3628–3633 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grivel, J. C. & Margolis, L. B. CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nature Med. 5, 344–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Malkevitch, N. et al. Coreceptor choice and T cell depletion by R5, X4 and R5X4 HIV-1 variants in CCR5-deficient (CCR5Δ32) and normal human lymphoid tissue. Virology (in the press, 2001).

  40. Lee, S. et al. Coreceptor competition for association with CD4 may change the susceptibility of human cells to infection with T-tropic and macrophagetropic isolates of human immunodeficiency virus type 1. J. Virol. 74, 5016–5023 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arthos, J. et al. CCR5 signal transduction in macrophages by human immunodeficiency virus and simian immunodeficiency virus envelopes. J. Virol. 74, 6418–6424 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S. & Landau, N. R. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185, 621–628 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, L. Q., He, T., Talal, A., Wang, G., Frankel, S. S. & Ho, D. D. In vivo distribution of the human immunodeficiency virus simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J. Virol. 72, 5035–5045 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghezzi, S. et al. Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem. Biophys. Res. Commun. 270, 992–996 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Xiao, H. et al. Selective CXCR4-antagonism by Tat: Implications for in vivo expansion of co-receptor use by HIV-1. Proc. Natl Acad. Sci. USA 97, 11466–11471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gallo, R. C. Tat as one key to HIV-induced immune pathogenesis and Tat (correction of Pat) toxoid as an important component of a vaccine. Proc. Natl Acad. Sci. USA 96, 8324–8326 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Albini, A. et al. HIV-1 Tat protein mimicry of chemokines. Proc. Natl Acad. Sci. USA 95, 13153–13158 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Benelli, R. et al. Human Immunodeficiency Virus Transactivator Protein (Tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: Implications for Tat-mediated pathogenesis. J. Infect. Dis. 182, 1643–1651 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. de Paulis, A. et al. Tat protein is an HIV-1-encoded ss-chemokine homolog that promotes migration and up-regulates CCR3 expression on human FcepsilonRI(+) cells. J. Immunol. 165, 7171–7179 (2000).

    Article  PubMed  Google Scholar 

  50. Huang, L., Bosch, I., Hofmann, W., Sodroski, J. & Pardee, A. B. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J. Virol. 72, 8952–8960 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pauza, C. D. et al. Vaccination with tat toxoid attenuates disease in simian/HIV-challenged macaques. Proc. Natl Acad. Sci. USA 97, 3515–3519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Doranz, B. J. et al. A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med. 186, 1395–1400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gallo, R. C. The enigmas of Kaposi's sarcoma. Science 282, 1837–1839 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C. & Cesarman, E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, B. T. et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's Sarcoma. J. Exp. Med. 191, 445–454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirshner, J. R., Staskus, K., Haase, A., Lagunoff, M. & Ganem, D. Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi's sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J. Virol. 73, 6006–6014 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwarz, M. & Murphy, P. M. Kaposi's Sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor constitutively activates NF-ÎşB and induces pro-inflammatory cytokine production via a C-terminal signaling determinant. J. Immunol. (Submitted).

  58. Moser, B. et al. Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem. J. 294, 285–292 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Addison, C. L. et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR(+) CXC chemokine-induced angiogenic activity. J. Immunol. 165, 5269–5277 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Virgin, H. W. IVth et al. Complete sequence and genomic analysis of murine γherpesvirus 68. J. Virol. 71, 5894–5904 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahuja, S. K. & Murphy, P. M. Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J. Biol. Chem. 268, 20691–20694 (1993).

    CAS  PubMed  Google Scholar 

  62. Dittmer, D. & Kedes, D. H. Do viral chemokines modulate Kaposi's sarcoma? Bioessays. 20, 367–370 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Kledal, T. N. et al. A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science 277, 1656–1659 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Stine, J. T. et al. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95, 1151–1157 (2000).

    CAS  PubMed  Google Scholar 

  65. Geras-Raaka, E., Varma, A., Clark-Lewis, I. & Gershengorn, M. C. Kaposi's sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1α inhibit signaling by KSHV G protein-coupled receptor. Biochem. Biophys. Res. Commun. 253, 725–727 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Endres, M. J., Garlisi, C. G., Xiao, H., Shan, L. & Hedrick, J. A. The Kaposi's sarcoma-related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J. Exp. Med. 189, 1993–1998 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luttichau, H. R. et al. A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J. Exp. Med. 191, 171–180 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dairaghi, D. J., Fan, R. A., McMaster, B. E., Hanley, M. R. & Schall, T. J. HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J. Biol. Chem. 274, 21569–21574 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, S. et al. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J. Exp. Med. 188, 193–198 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Penfold, M. E. et al. Cytomegalovirus encodes a potent alpha chemokine. Proc. Natl Acad. Sci. USA 96, 9839–9844 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao, J. L. & Murphy, P. M. Human cytomegalovirus open reading frame US28 encodes a functional β chemokine receptor. J. Biol. Chem. 269, 28539–28542 (1994).

    CAS  PubMed  Google Scholar 

  72. Kledal, T. N., Rosenkilde, M. M. & Schwartz, T. W. Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett. 441, 209–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Bodaghi, B. et al. Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J. Exp. Med. 188, 855–866 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Billstrom, M. A., Lehman, L. A. & Worthen G. S. Depletion of extracellular RANTES during human cytomegalovirus infection of endothelial cells. Am. J. Respir. Cell Mol. Biol. 21, 163–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Streblow, D. N. et al. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99, 511–520 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Pleskoff, O., Treboute, C. & Alizon, M. The cytomegalovirus-encoded chemokine receptor US28 can enhance cell-cell fusion mediated by different viral proteins. J. Virol. 72, 6389–6397 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Margulies, B. J., Browne, H. & Gibson, W. . Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 225, 111–125 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Pleskoff, O. et al. Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 276, 1874–1878 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Casarosa, P. et al. Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J. Biol. Chem. 276, 1133–1137 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. MacDonald, M. R., Burney, M. W., Resnick, S. B. & Virgin, H. W. IV. Spliced mRNA encoding the murine cytomegalovirus chemokine homolog predicts a β chemokine of novel structure. J. Virol. 73, 3682–3691 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fleming, P. et al. The Murine Cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. J. Virol. 73, 6800–6809 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Saederup, N., Lin, Y. C., Dairaghi, D. J., Schall, T. J. & Mocarski, E. S. Cytomegalovirus-encoded β chemokine promotes monocyte-associated viremia in the host. Proc. Natl Acad. Sci. USA 96, 10881–10886 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salazar-Mather, T. P., Orange, J. S. & Biron, C. A. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1α (MIP-1α)-dependent pathways. J. Exp. Med. 187, 1–14 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chee, M. S., Satchwell, S. C., Preddie, E., Weston, K. M. & Barrell, B. G. Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344, 774–777 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Isegawa, Y., Ping, Z., Nakano, K., Sugimoto, N. & Yamanishi, K. Human herpesvirus 6 open reading frame U12 encodes a functional β-chemokine receptor. J. Virol. 72, 6104–6112 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Davis-Poynter, N. J. et al. Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J. Virol. 71, 1521–1529 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Beisser, P. S. et al. The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J. Virol. 72, 2352–2363 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Martin, W. J. Chemokine receptor-related genetic sequences in an african green monkey simian cytomegalovirus-derived stealth virus. Exp. Mol. Pathol. 69, 10–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Martin, W. J. Melanoma growth stimulatory activity (MGSA/GRO-α) chemokine genes incorporated into an African green monkey simian cytomegalovirus-derived stealth virus. Exp. Mol. Pathol. 66, 15–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Lusso, P. & Gallo, R. C. Human herpesvirus 6 in AIDS. Immunol. Today. 16, 67–71 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Milne, R. S. et al. RANTES binding and down-regulation by a novel human herpesvirus-6β chemokine receptor. J. Immunol. 164, 2396–2404 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Zou, P. et al. Human herpesvirus 6 open reading frame U83 encodes a functional chemokine. J. Virol. 73, 5926–5933 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, L. et al. A viral anti-inflammatory chemokine binding protein, M-T7, reduces intimal hyperplasia after vascular injury. J. Clin. Invest. 105, 1613–1621 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dabbagh, K. et al. Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J. Immunol. 165, 3418–3422 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Lalani, A. S. & McFadden, G. Evasion and exploitation of chemokines by viruses. Cytok. Growth Factor Rev. 10, 219–233 (1999).

    Article  CAS  Google Scholar 

  96. Alcami, A. & Koszinowski, U. H. Viral mechanisms of immune evasion. Immunol. Today. 21, 447–455 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Parry, B. C. et al. A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J. Exp. Med. 191, 573–578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Berkel, V. et al. Identification of a γherpesvirus-selective chemokine binding protein that inhibits chemokine action. J. Virol. 74, 6741–6747 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lalani, A. S. et al. Role of myxoma virus soluble CC-chemokine inhibitor glycoprotein, M-T1, during myxoma virus pathogenesis. Virology 256, 233–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Carfi, A., Smith, C. A., Smolak, P. J., McGrew, J. & Wiley, D. C. Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc. Natl Acad. Sci. USA 96, 12379–12383 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Google Scholar 

  102. Lalani, A. et al. Use of chemokine receptors by poxviruses. Science 286, 1968–1971 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Bais, C. et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Camarda, G. et al. The equine herpesvirus 2 E1 open reading frame encodes a functional chemokine receptor. J. Virol. 73, 9843–9848 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nicholas, J. Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J. Virol. 70, 5975–5989 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Damon, I., Murphy, P. M. & Moss, B. Broad spectrum chemokine antagonistic activity of a human poxvirus chemokine homolog. Proc. Natl Acad. Sci. USA 95, 6403–6407 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krathwohl, M. D., Hromas, R., Brown, D. R., Broxmeyer, H. E., & Fife, K. H. Functional characterization of the C–C chemokine-like molecules encoded by molluscum contagiosum virus types 1 and 2. Proc. Natl Acad. Sci. USA 94, 9875–9880 (1997).p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, P. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2, 116–122 (2001). https://doi.org/10.1038/84214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/84214

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing