Abstract
In 1960, Jacob and Monod described the bacterial operon, a cluster of functionally interacting genes whose expression is tightly coordinated. Global expression analysis has shown that the highly coordinate expression of genes functioning in common processes is also a widespread phenomenon in eukaryotes. These sets of co-regulated genes, or ‘synexpression groups’, show a striking parallel to the operon, and may be a key determinant facilitating evolutionary change leading to animal diversity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Brown,P. O. & Botstein,D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33 –37 (1999).
Gerhold,D., Rushmore,T. & Caskey,C. T. DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168– 173 (1999).
Lipshutz,R. J., Fodor,S. P., Gingeras,T. R. & Lockhart,D. J. High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24 (1999).
Bowtell,D. D. Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21, 25– 32 (1999).
Cheung,V. G. et al. Making and reading microarrays. Nat. Genet. 21, 15–19 (1999).
Duggan,D. J., Bittner,M., Chen,Y., Meltzer,P. & Trent,J. M. Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 ( 1999).
Bassett,D. E., Eisen,M. B. & Boguski,M. S. Gene expression informatics—it's all in your mine. Nat. Genet. 21, 51– 55 (1999).
DeRisi,J. L., Vishwanath,R. I. & Brown,P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).
Chu,S et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 ( 1998).
Cho,R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).
Spellman,P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273– 97 (1998).
Vishwanath,R. I. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83– 87 (1999).
Wen,X. et al. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl Acad. Sci. USA 95, 334–339 (1998).
Fambrough,D., McClure,K., Kazlauskas,A. & Lander,E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).
Eisen,M. B., Spellman,P. T., Brown,P. O. & Botstein,D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).
Gawantka,V. et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95–141 (1998).
Niehrs,C. Gene-expression screens in vertebrate embryos: more than meets the eye. Genes Funct. 1, 229–231 (1997).
Onichtchouk,D. et al. The Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controling dorso–ventral patterning of Xenopus mesoderm. Development 122, 3045–3053 (1996).
Jen, W. -C., Gawantka,V., Pollet,N., Niehrs,C. & Kintner,C. Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev. 13, 1486–1499 (1999).
Dandekar,T., Snel,B., Huynen,M. & Bork,P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 273, 324–328 (1998).
Jacob,F. The operon—25 years later. C. R. Acad. Sci. Paris 320, 199–206 (1997).
Lawrence,J. G. Selfish operons and speciation by gene transfer. Trends Microbiol. 5, 355–359 ( 1997).
Blattner,F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 ( 1997).
Blumenthal,T. Gene clusters and polycistronic transcription in eukaryotes. BioEssays 20, 480–487 ( 1998).
McInerny,C. J., Partridge,J. F., Mikesell,G. E., Creemer,D. P. & Breeden,L. L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11, 1277–1288 (1997).
Yuh,C. H., Bolouri,H. & Davidson,E. H. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998).
Britten,R. J. & Davidson,E. H. Gene regulation for higher cells: a theory. Science 165, 349– 357 (1969).
Gerhart,J. & Kirschner,M. Cells, Embryos and Evolution (Blackwell, Malden, 1997).
Duboule,D. & Wilkins,A. S. The evolution of ’bricolage’. Trends Genet. 14, 54–59 (1998).
Huang,F. Syntagms in development and evolution. Int. J. Dev. Biol. 42, 487–494 (1998).
Jan,Y. N. & Jan,L. Y. Functional gene cassettes in development. Proc. Natl Acad. Sci. USA 90, 8305– 8307 (1993).
Nishida,E. & Gotoh,Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131 ( 1993).
Cheverud,J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 ( 1996).
Shubin,N., Tabin,C. & Carroll,S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 ( 1997).
Artavanis-Tsakonas,S., Rand,M. D. & Lake,R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).
Lagna,G., Hata,A., Hemmati-Brivanlou,A. & Massague,J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832–836 (1996).
Meersman, G. et al. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in vivo and transcriptional activation. Mech. Develop. 61, 127–140 ( 1997).
Bhushan,A., Chen,Y. & Vale,W. SMAD7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev. Biol. 200, 260– 268 (1998).
Frisch,A. & Wright,C. V. E. XBMPRII, a novel Xenopus type II receptor mediating BMP signalling in embryonic tissues. Development 125, 431–442 (1998).
Hata,A., Lagna,G., Massague,J. & Hemmati-Brivanlou,A. SMAD6 inhibits BMP/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes Dev. 12, 186– 197 (1998).
Onichtchouk,D. et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 400, 480–485 (1999).
Wagner,G. P. in Advances in Artificial Life (eds Moran, F., Moreno, A., Merelo, J. J. & Chacon, P. ) 317–328 (Springer, Berlin, 1995).
Acknowledgements
We thank D. Duboule and W. Pyerin for critical reading of the manuscript.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Niehrs, C., Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999). https://doi.org/10.1038/990025
Issue Date:
DOI: https://doi.org/10.1038/990025
This article is cited by
-
Genomic investigation of duplication, functional conservation, and divergence in the LRR-RLK Family of Saccharum
BMC Genomics (2024)
-
Evolution and expression analysis of the caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) gene family in jute (Corchorus L.)
BMC Genomics (2023)
-
Detection and identification of cis-regulatory elements using change-point and classification algorithms
BMC Genomics (2022)
-
Gene function prediction in five model eukaryotes exclusively based on gene relative location through machine learning
Scientific Reports (2022)
-
Discovery of a genetic module essential for assigning left–right asymmetry in humans and ancestral vertebrates
Nature Genetics (2022)