Abstract
The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





References
Garrels, R. M., Lerman, A. & Mackenzie, F. T. Controls of atmospheric O2 and CO2 — past, present, and future. Am. Sci. 64, 306–315 (1976).
Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).
Ebelmen J. J. Sur les produits de la décomposition des espèces minérales de la famille des silicates. Annu. Rev. Mines 12, 627–654 (1845).
Urey, H. C. The Planets: their Origin and Development (Yale Univ., New Haven, 1952).
IPCC (Intergovernmental Panel on Climate Change) Climate Change 2001: Synthesis Report (IPCC, Geneva, 2001).
Berner, R. A. & Canfield, D. E. A model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).
Veizer, J. et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999).
Berner, R. A. & Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta 47, 855–862 (1983).
Garrels R. M. & Lerman, A. Coupling of the sedimentary sulfur and carbon cycles – an improved model. Am. J. Sci. 284, 989–1007 (1984).
Walker J. C. G. Global geochemical cycles of atmospheric oxygen. Mar. Geol. 70, 159–174 (1986).
Berner, R. A. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta 65, 685–694 (2001).
Hayes, J. M, Strauss, H. & Kaufman, A. J. The abundance of 13C in marine organic matter and isotope fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).
Korte, C, Kozur, H. W., Joachimski, M. M. & Veizer, J. Strontium, oxygen and carbon isotope records of Permian seawater. Eur. Geophys. Soc. Geophys. Res. Abstr. 5, 13061 (2003).
Klemme, H. D. & Ulmishek, G. F. Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. Bull. Am. Ass. Petrol. Geol. 75, 1809–1851 (1991).
Bestougeff, M. A. Summary of world coal resources and reserves. 26th Int. Geol. Cong. Paris Colloq. 35, 353–366 (1980).
Strauss, H. Geological evolution from isotope proxy signals — sulfur. Chem. Geol. 161, 89–101 (1999).
Demaison, G. J. & Moore, G. T. Anoxic environments and oil source bed genesis. Bull. Am. Ass. Petrol. Geol. 64, 1179–1209 (1980).
Berry, W. B. N. & Wilde, P. Progressive ventilation of the oceans — an explanation for the distribution of the lower Paleozoic black shales. Am. J. Sci. 278, 257–275 (1978).
Pederson, T. F. & Calvert, S. E. Anoxia vs productivity: what controls the formation of organic carbon-rich sediments and sedimentary rocks. Bull. Am. Ass. Petrol. Geol. 74, 454–466 (1990).
Canfield, D. E. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 114, 315–329 (1994).
Hedges J. I. et al. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. Am. J. Sci. 299, 529–555 (1999).
Falkowski, P. G. & Raven, J. Aquatic Photosynthesis (Blackwell, Oxford, 1997).
Lenton T. M. & Watson, A. J. Redfield revisited 2: What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 249–268 (2000).
Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Wildman, R. A. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 31, 105–134 (2003).
Berner, R. A. The Phanerozoic Carbon Cycle (Oxford Univ. Press, Oxford, in the press).
Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).
Colman, A. S. & Holland, H. D. Marine Authigenesis: From Microbial to Global (eds Glenn, C., Lucas, J. & Prevot-Lucas, L.) 53–75 (Soc. Econ. Paleontologists & Mineralogists, 2000).
Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).
Crowley, T. J. & North, G. R. Paleoclimatology (Oxford Univ. Press, Oxford, 1991).
Weissert, H. C. Isotope stratigraphy, a monitor of paleoenvironmental change: a case study from the Early Cretaceous. Surv. Geophys. 10, 1–61 (1989).
Wallmann, K. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim. Cosmochim. Acta 65, 3005–3025 (2001).
Betts, J. N. & Holland, H. D. The oxygen content of ocean bottom waters, the burial efficiency of organic-carbon and the regulation of atmospheric oxygen. Palaeogeogr., Palaeoclimatol., Palaeoecol. 97, 5–18 (1991).
Berner, R. A. & Kothavala, Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).
Hansen, K. W. & Wallmann, K. Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2 . Am. J. Sci. 303, 94–148 (2003).
Tajika, E. Climate change during the last 150 million years: reconstruction from a carbon cycle model. Earth Planet Sci. Lett. 160, 695–707 (1998).
Bergman, N., Lenton, T. & Watson, A. Coupled Phanerozoic predictions of atmospheric oxygen and carbon dioxide. Eur. Geophys. Soc. Geophys. Res. Abstr. 5, 11208 (2003).
Royer, D. L., Berner, R. A. & Beerling, D. J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci. Rev. 54, 349–392 (2001).
Crowley, T. J. & Berner, R. A. CO2 and climate change. Science 292, 870–872 (2001).
Acknowledgements
This research was supported by grants from the US Department of Energy and the US National Science Foundation.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Berner, R. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323–326 (2003). https://doi.org/10.1038/nature02131
Issue Date:
DOI: https://doi.org/10.1038/nature02131