Abstract
Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs1, but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus2,3. Here we show that released coral mucus efficiently traps organic matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders of magnitude within 2 h. Tidal currents concentrate these mucus aggregates into the lagoon, where they rapidly settle. Coral mucus provides light energy harvested by the zooxanthellae and trapped particles to the heterotrophic reef community, thereby establishing a recycling loop that supports benthic life, while reducing loss of energy and nutrients from the reef ecosystem.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Goreau, T. F., Goreau, N. I. & Goreau, T. J. Corals and coral reefs. Sci. Am. 241, 124–135 (1979)
Crossland, C., Barnes, D. & Borowitzka, M. Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60, 81–90 (1980)
Davies, P. S. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2, 181–186 (1984)
Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981)
Meikle, P., Richards, G. & Yellowlees, D. Structural investigations on the mucus from 6 species of coral. Mar. Biol. 99, 187–193 (1988)
Ducklow, H. & Mitchell, R. Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24, 715–725 (1979)
Krupp, D. A. Mucus production by corals exposed during an extreme low tide. Pacif. Sci. 38, 1–11 (1984)
Schuhmacher, H. Proc. 3rd Int. Coral Reef Symp. Miami, Florida 503–509 (University of Miami, Florida, 1977)
Coles, S. & Strathman, R. Observations on coral mucus flocs and their potential trophic significance. Limnol. Oceanogr. 18, 673–678 (1973)
Marshall, M. Observations on organic aggregates in the vicinity of coral reefs. Mar. Biol. 2, 50–55 (1968)
Johannes, R. Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12, 189–195 (1967)
Romaine, S., Tambutte, E., Allemand, D. & Gattuso, J. P. Photosynthesis, respiration and calcification of a zooxanthellate scleractinian coral under submerged and exposed conditions. Mar. Biol. 129, 175–182 (1997)
Moriarty, D. J. W., Pollard, P. C. & Hunt, W. G. Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar. Biol. 85, 285–292 (1985)
Ferrier-Pages, C., Leclercq, N., Jaubert, J. & Pelegri, S. P. Enhancement of pico- and nanoplankton growth by coral exudates. Aquat. Microb. Ecol. 21, 203–209 (2000)
Vacelet, E. & Thomassin, B. Microbial utilization of coral mucus in long term in situ incubation over a coral reef. Hydrobiologia 211, 19–32 (1991)
Shanks, A. L. & Edmondson, E. W. Laboratory-made artificial marine snow—a biological model of the real thing. Mar. Biol. 101, 463–470 (1989)
Riedl, R. J., Huang, N. & Machan, R. The subtidal pump: a mechanism of interstitial water exchange by wave action. Mar. Biol. 13, 210–221 (1972)
Parnell, K. E. Water movement within a fringing reef flat, Orpheus Island, North Queensland, Australia. Coral Reefs 5, 1–6 (1986)
Oberdorfer, J. A. & Buddemeier, R. W. Coral-reef hydrology: field studies of water movement within a barrier reef. Coral Reefs 5, 7–12 (1986)
Wild, C. et al. Degradation and mineralization of coral mucus in reef environments. Mar. Ecol. Prog. Ser. 267, 159–171 (2004)
Marsden, J. & Meeuwig, J. Preferences of planktotrophic larvae of the tropical serpulid Spirobranchus giganteus (Pallas) for exudates of corals from a Barbados reef. J. Exp. Mar. Biol. Ecol. 137, 97–104 (1990)
Benson, A. & Muscatine, L. Wax in coral mucus—energy transfer from corals to reef fishes. Limnol. Oceanogr. 19, 810–814 (1974)
Richman, S., Loya, Y. & Slobodkin, L. Rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol. Oceanogr. 20, 918–923 (1975)
Wilkinson, C. R. Microbial ecology on a coral reef. Search 18, 31–33 (1987)
Richter, C., Wunsch, M., Rasheed, M., Kotter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001)
Herndl, G. J. & Velimirov, B. Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar. Biol. 90, 363–369 (1986)
Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74 (1991)
Huettel, M. & Gust, G. Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows. Mar. Ecol. Prog. Ser. 82, 187–197 (1992)
Acknowledgements
We thank M. Alisch, S. Menger, H. Woyt, S. Gonelli and L. Hönemann for experimental assistance and for help with chemical analyses; O. Hoegh-Guldberg, R. Johnstone, T. Upton, R. Forbes and other staff members of Heron Island Research Station for logistical assistance; and P. Cook, C. Richter, R. Tollrian and H. Zech for improving the manuscript. All sample collections and in situ experiments were carried out under permits issued by the Great Barrier Reef Marine Park Authority. The Max Planck Society, Germany, funded this research.Authors' contributions M.H. and C.W. conceptually designed and coordinated all experimental work, made most of the measurements, and wrote the manuscript. A.K. quantified coral distribution on Heron Island. S.K. and M.R. helped with chamber experiments and water analyses. B.B.J. contributed with ideas and advice to the significant improvement of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Supplementary Information
This includes a detailed explanation of the in-situ chamber experiments described in the manuscript. (DOC 20 kb)
Rights and permissions
About this article
Cite this article
Wild, C., Huettel, M., Klueter, A. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004). https://doi.org/10.1038/nature02344
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature02344