Abstract
The hydrophobic effect — the tendency for oil and water to segregate — is important in diverse phenomena, from the cleaning of laundry, to the creation of micro-emulsions to make new materials, to the assembly of proteins into functional complexes. This effect is multifaceted depending on whether hydrophobic molecules are individually hydrated or driven to assemble into larger structures. Despite the basic principles underlying the hydrophobic effect being qualitatively well understood, only recently have theoretical developments begun to explain and quantify many features of this ubiquitous phenomenon.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Safron, S. A. Statistical Thermodynamics of Surfaces, Interfaces and Membranes Ch. 1–3 (Addison-Wesley, Reading, 1994).
Tanford, C. The hydrophobic effect and the organization of living matter. Science 200, 1012–1018 ( 1978).
Kauzmann, W. Some forces in the interpretation of protein denaturation. Adv. Prot. Chem. 14, 1–63 ( 1959).
Tanford, C. & Reynolds, J. Nature's Robots: A History of Proteins Ch. 12 (Oxford Univ. Press, Oxford, 2001).
Tanford, C. How protein chemists learned about the hydrophobic factor. Protein Sci. 6, 1358–1366 ( 1997).
Dixh, S., Crain, J., Pooh, W. C. K., Finney, J. L. & Soper, A. K. Molecular segregation observed in a concentrated alcohol-water solution. Nature 416, 829–832 ( 2002).
Swope, W. C. & Andersen, H. C. A molecular dynamics method for calculating the solubility of gases in liquids and the hydrophobic hydration of inert gas atoms in aqueous solution. J. Phys. Chem. 88, 6548–6556 ( 1984).
Pratt, L. R. & Chandler, D. Theory of the hydrophobic effect. J. Chem. Phys. 67, 3683–3704 ( 1977).
Pratt, L. R. & Chandler, D. Hydrophobic solvation of nonspherical solutes. J. Chem. Phys. 73, 3430–3433 ( 1980).
Pratt, L. R. & Chandler, D. Hydrophobic interactions and osmotic second virial coefficients for methanol in water. J. Solution Chem. 9, 1–17 ( 1980).
Chandler, D. Introduction to Modern Statistical Mechanics Ch. 3, 5–7 (Oxford Univ. Press, New York, 1987).
Barrat, J. -L. & Hansen, J. -P. Basic Concepts for Simple and Complex Liquids (Cambridge Univ. Press, Cambridge, 2003).
Sharp, K. A., Nicholls, A., Fine, R. & Honig, B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106–109 ( 1991).
Ashbaugh, H. S., Kaler, E. W. & Paulaitis, M. E. A “Universal” surface area correlation for molecular hydrophobic phenomena. J. Am. Chem. Soc. 121, 9243–9244 ( 1999).
Tanford, C. Interfacial free energy and the hydrophobic effect. Proc. Natl Acad. Sci. USA 76, 4175–4176 ( 1979).
Bowron, D. T., Filipponi, A., Roberts, M. A. & Finney, J. L. Hydrophobic hydration and the formation of a clathrate hydrate. Phys. Rev. Lett. 81, 4164–4167 ( 1998).
Stillinger, F. H. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solution Chem. 2, 141––158 ( 1973).
Dill, K. A. & Bromberg, S. Molecular Driving Forces Ch. 16, 30 (Garland Science, New York, 2003).
Murphy, K. P. Hydration and convergence temperatures: on the use and interpretation of correlation plots. Biophys. Chem. 51, 311–326 ( 1994).
Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 ( 1999).
Huang, D. M. & Chandler, D. The hydrophobic effect and the influence of solute–solvent attractions. J. Phys. Chem. B 106, 2047–2053 ( 2002).
Wallqvist, A. & Berne, B. J. Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 99, 2893–2899 ( 1995).
Gerstein, M. & Lynden-Bell, R. M. Simulation of water around a model protein helix. 1. Two-dimensional projections of solvent structure. J. Phys. Chem. 97, 2982–2990 ( 1993).
Ashbaugh, H. S. & Paulaitis, M. E. Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123, 10721–10728 ( 2001).
Huang, D. M., Geissler, P. L. & Chandler, D. Scaling of hydrophobic free energies. J. Phys. Chem. B 105, 6704–6709 ( 2001).
Lee, C. Y., McCammon, J. A. & Rossky, P. J. The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys. 80, 4448–4455 ( 1984).
Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity Ch. 8 (Oxford Univ, Oxford, 1982).
Smith, R. & Tanford, C. Hydrophobicity of long chain n-alkyl carboxylic acids, as measured by their distribution between heptane and aqueous solutions. Proc. Natl Acad. Sci. USA 70, 289–293 ( 1973).
Tanford, C. The Hydrophobic Effect: Formation of Micelles & Biological Membranes Ch. 1–4, 8 (Wiley, New York, 1980).
Raschke, T. M., Tsai, J. & Levitt, M. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water. Proc. Natl Acad. Sci. USA 98, 5965–5969 ( 2001).
TenWolde, P. R. & Chandler, D. Drying induced hydrophobic polymer collapse. Proc. Natl Acad. Sci. USA 99, 6539–6543 ( 2002).
Chandler, D., Weeks, J. D. & Andersen, H. C. The van der Waals picture of liquids, solids and phase transformations. Science 220, 787–794 ( 1983).
Scatena, L. F. & Richmond, G. L. Orientation, hydrogen bonding, and penetration of water at the organic/water interface. J. Phys. Chem. B 105, 11240–11250 ( 2001).
Ball, P. Chemical physics: how to keep dry in water. Nature 423, 25–26 ( 2003).
Jensen, T. R. et al. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting. Phys. Rev. Lett. 90, 086101.1–086101.4 ( 2003).
Zhang, X., Zhu, Y. & Granick, S. Hydrophobicity at a janus interface. Science 295, 663–666 ( 2002).
Larson, R. G. Structure and Rheology of Complex Fluids Ch. 12 (Oxford Univ. Press, New York, 1999).
Maibaum, L., Dinner, A. R. & Chandler, D. Micelle formation and the hydrophobic effect. J. Phys. Chem. B 108, 6778–6781 ( 2004).
Finney, J. L. Water? What's so special about it? Phil. Trans. R. Soc. Lond. B 359, 1145–1165 ( 2004).
Tanford, C. Ben Franklin Stilled the Waves Ch. 14 (Oxford Univ. Press, Oxford, 2004).
Huang, D. M. & Chandler, D. Cavity formation and the drying transition in a Lennard-Jones fluid. Phys. Rev. E 61, 1501–1506 ( 2000).
Bolhuis, P. G. & Chandler, D. Transition path sampling of cavitation between molecular scale solvophobic surfaces. J. Chem. Phys. 113, 8154–8160 ( 2000).
Weeks, J. D. Connecting local structure to interface formation: A molecular scale van der Waals theory of non-uniform liquids. Annu. Rev. Phys. Chem. 53, 533–562 ( 2002).
Southall, N. T. & Dill, K. A. The mechanism of hydrophobic solvation depends on solute radius. J. Phys. Chem. B 104, 1326–1331 ( 2003).
Binder, K., Landau, D. P. & Ferrenberg, A. M. Wetting and capillary condensation of lattice gases in thin film geometry. Ber. BunsenGes. Phys. Chem. 98, 340–345 ( 1994).
Maibaum, L. & Chandler, D. A coarse-grained model of water confined in a hydrophobic tube. J. Phys. Chem. B 107, 1189–1193 ( 2003).
Smit, B. et al. Computer simulations of a water/oil interface in the presence of micelles. Nature 348, 624–625 ( 1990).
Wu, D., Chandler, D. & Smit, B. Electrostatic analogy for surfactant assemblies. J. Phys. Chem. 96, 4077–4083 ( 1992).
Larson, R. G. Monte Carlo simulation of microstructural transitions in surfactant systems. J. Chem. Phys. 96, 7904–7918 ( 1992).
Garde, S., Hummer, G., Garcia, A. E., Paulaitis, M. E. & Pratt, L. R. Origin of entropy convergence in hydrophobic hydration and protein folding. Phys. Rev. Lett. 77, 4966–4968 ( 1998).
Murphy, K. P., Privalov, P. L. & Gill, S. J. Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247, 559–561 ( 1990).
Huang, D. & Chandler, D. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc. Natl Acad. Sci. USA 97, 8324–8327 ( 2000).
Baldwin, R. L. Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl Acad. Sci. USA 83, 8069–8072 ( 1986).
Gerstein, M. & Chothia, C. Packing at the protein-water interface. Proc. Natl Acad. Sci. USA 93, 10167–10172 ( 1996).
Levy, Y. & Onuchic, J. N. Water and proteins: A love–hate relationship. Proc. Natl Acad. Sci. USA 101, 3325–3326 ( 2004).
Rabani, E., Reichman, D. R., Geissler, P. L. & Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 ( 2003).
Lum, K. & Chandler, D. Phase diagram and free energies of vapor films and tubes for a confined fluid. Int. J. Thermophys. 19, 845–855 ( 1998).
Parker, J. L., Claesson, P. M. & Attard, P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. J. Phys. Chem. 98, 8468–8480 ( 1994).
Frenkel, D. & Smit, B. Understanding Molecular Simulation 2nd edn Ch. 7 (Academic, San Diego, 2002).
Hummer, G., Garde, S., Garcia, A. E., Pohorille, A. & Pratt, L. R. An information theory model of hydrophobic interactions. Proc. Natl Acad. Sci. USA 93, 8951–8955 ( 1996).
Morrison, T. J. & Billett, F. The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolytes. J. Chem. Soc. 3819–3822 ( 1952).
Chandler, D. Gaussian field model of fluids with an application to polymeric fluids. Phys. Rev. E 48, 2898–2905 ( 1993).
Silverstein, K. A. T., Haymet, A. D. J. & Dill, K. A. The strength of hydrogen bonds in liquid water and around nonpolar solutes. J. Am. Chem. Soc. 122, 8037–8041 ( 2000).
Gallagher, K. R. & Sharp, K. A. A new angle on heat capacity changes in hydrophobic solvation. J. Am. Chem. Soc. 125, 9853–9860 ( 2003).
Gallicchio, E., Kubo, M. M. & Levy, R. M. Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B. 104, 6271–6285 ( 2000).
Mackay, D. & Shiu, W. Y. A critical review of Henry's Law constants for chemicals of environmental interest. J. Phys. Chem. Ref. Data 10, 1175–1199 ( 1981).
Ben-Naim, B. Hydrophobic Interactions Ch. 3 (Plenum, New York, 1980).
Mackay, D., Shiu, W. Y. & Ma, K. C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate of Organic Chemicals Vol. III, 117, 170 (CRC Press, Boca Raton, 1993).
Acknowledgements
My research on hydrophobicity was supported by the National Science Foundation and the US Department of Energy. I thank L. Maibaum for discussions and help in writing this review. I am also indebted to R. Levy and C. Tanford for constructive criticisms of an earlier draft. My choices for references are illustrative, not comprehensive.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Additional information
Author Information Reprints and permissions informtion is available at npg.nature.com/reprintsandpermissions.
Rights and permissions
About this article
Cite this article
Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005). https://doi.org/10.1038/nature04162
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature04162
This article is cited by
-
Solvent effects in anion recognition
Nature Reviews Chemistry (2024)
-
Degrees of hornification in softwood and hardwood kraft pulp during drying from different solvents
Cellulose (2024)
-
Water-solid contact electrification and catalysis adjusted by surface functional groups
Nano Research (2024)
-
Advancements in nanoscale delivery systems: optimizing intermolecular interactions for superior drug encapsulation and precision release
Drug Delivery and Translational Research (2024)
-
Solubility of Gases in Liquids. 23: High-Precision Determination of Henry’s Law Constants of Propane Dissolved in Liquid Water from T = 278 K to T = 318 K
Journal of Solution Chemistry (2024)