Abstract
Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the ‘Minoan’ caldera-forming eruption of Santorini volcano, Greece4, which occurred in the late 1600s bc. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40–60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Miller, C. F. & Wark, D. A. Supervolcanoes and their explosive supereruptions. Elements 4, 11–15 (2008)
Newhall, C. G. & Dzurizin, D. Historical Unrest at Large Calderas of the World Vols 1 and 2 (Bull. US Geol. Surv. 1855, USGS, 1988)
Gottsmann, J. & Marti, J. (eds) Caldera Volcanism: Analysis, Modelling and Response (Dev. Volcanol. 10, Elsevier, 2008)
Sigurdsson, H. & Carey, S. and 12 others. Marine investigations of Greece’s Santorini volcanic field. Trans. Am. Geophys. Union 87, 337–342 (2006)
Bachmann, O. & Bergantz, G. W. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004)
Burgisser, A. & Bergantz, G. W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011)
Costa, F., Dohmen, R. & Chakraborty, S. Timescales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 69, 545–594 (2008)
Bindeman, I. N., Davis, A. M. & Drake, M. J. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim. Cosmochim. Acta 62, 1175–1193 (1998)
Blundy, J. & Wood, B. Crystal-chemical control on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta 55, 193–209 (1991)
Zellmer, G. F., Blake, S., Vance, D., Hawkesworth, C. & Turner, S. Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St Vincent) determined by Sr diffusion systematics. Contrib. Mineral. Petrol. 136, 345–357 (1999)
Morgan, D. J. et al. Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology 34, 845–848 (2006)
Costa, F., Chakraborty, S. & Dohmen, R. Diffusion coupling between trace and major elements and a model for calculation of magma residence time using plagioclase. Geochim. Cosmochim. Acta 67, 2189–2200 (2003)
Druitt, T. H. et al. Santorini Volcano (J. Geol. Soc. Lond. Mem. 19, Geological Society, 1999)
Cottrell, E., Gardner, J. E. & Rutherford, M. J. Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece). Contrib. Mineral. Petrol. 135, 315–331 (1999)
Martin, V., Davidson, J., Morgan, D. & Jerram, D. Using the Sr isotope compositions of feldspars and glass to distinguish magma system components and dynamics. Geology 38, 539–542 (2010)
Francalanci, L. et al. in The European Laboratory Volcanoes 175–186 (Official Publ. Eur. Comm., 1998)
Huijsmans, J. Calc-Alkaline Lavas from the Volcanic Complex of Santorini, Aegean Sea, Greece (Geologica Ultraiectina 41, Inst. Aardwetenschappen Rijksuniversiteit Utrecht, 1985)
Aizawa, K., Acocella, V. & Yoshida, T. How the development of magma chambers affects collapse calderas: insights from an overview. Spec. Publ. Geol. Soc. (Lond.) 269, 65–81 (2006)
Wiebe, R. A. & Collins, W. J. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J. Struct. Geol. 20, 1273–1289 (1998)
Cruden, A. R. On the emplacement of tabular granites. J. Geol. Soc. Lond. 155, 853–862 (1998)
Grocott, J. Arévalo, C. Welkner, D. & Cruden, A. Fault-assisted vertical pluton growth: Coastal Cordillera, north Chilean Andes. J. Geol. Soc. Lond. 166, 295–301 (2009)
Wark, D. A., Hildreth, W., Spear, F. S., Cherniak, D. J. & Watson, E. B. Pre-eruption recharge of the Bishop magma system. Geology 35, 235–238 (2007)
Saunders, K. E., Morgan, D. J., Baker, J. A. & Wysoczanski, R. J. The magmatic evolution of the Whakamaru supereruption, New Zealand, constrained by a microanalytical study of plagioclase and quartz. J. Petrol. 51, 2465–2488 (2010)
de Silva, S., Salas, G. & Schubring, S. Triggering explosive eruptions: the case for silicic magma recharge at Huaynaputina, southern Peru. Geology 36, 387–390 (2008)
McLeod, P. & Tait, S. R. The growth of dykes from magma chambers. J. Volcanol. Geotherm. Res. 92, 231–245 (1999)
Jellinek, A. M. & DePaulo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003)
Gottsmann, J. & Battaglia, M. Deciphering causes of unrest at explosive collapse calderas: Recent advances and future challenges of joint time-lapse gravimetric and ground deformation studies. Dev. Volcanol. 10, 417–446 (2008)
Hill, D. P. Unrest in Long Valley caldera, California, 1978–2004. Spec. Publ. Geol. Soc. (Lond.) 269, 1–24 (2006)
Dzurisin, D., Yamashita, K. M. & Kleinman, J. W. Mechanisms of crustal uplift and subsidence at the Yellowstone caldera, Wyoming. Bull. Volcanol. 56, 261–270 (1994)
LaTourrette, T. & Wasserbourg, G. J. Mg diffusion in anorthite: implications for the formation of early solar system planetismals. Earth Planet. Sci. Lett. 158, 91–108 (1998)
Giletti, B. J. & Casserly, J. E. D. Strontium diffusion kinetics in plagioclase feldspars. Geochim. Cosmochim. Acta 58, 3785–3793 (1994)
Santo, A. P. Magmatic evolution processes as recorded in plagioclase phenocrysts of Nea Kameni rocks (Santorini Volcano, Greece). Dev. Volcanol. 7, 139–160 (2005)
Stormer, J. C., Jr The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am. Mineral. 68, 586–594 (1983)
Andersen, D. J. & Lindsley, D. H. New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Trans. Am. Geophys. Union 66, 416 (1985)
Hinton, R. W. Ion microprobe trace-element analysis of silicates: measurement of multi-element glasses. Chem. Geol. 83, 11–25 (1990)
Vaggelli, G., Pellegrini, M., Vougioukalakis, G., Innocenti, S. & Francalanci, L. Highly Sr radiogenic tholeiitic magmas in the latest inter-Plinian activity of Santorini volcano, Greece. J. Geophys. Res. 114, B06201 (2009)
Conticelli, S., Francalanci, L., Santo, A. P. & Petrone, C. in The European Laboratory Volcanoes 157–174 (Official Publ. Eur. Comm., 1998)
Gertisser, R., Preece, K. & Keller, J. The Plinian lower pumice 2 eruption, Santorini, Greece: magma evolution and volatile behaviour. J. Volcanol. Geotherm. Res. 186, 387–406 (2009)
Lasaga, A. C. Kinetic Theory in the Earth Sciences (Princeton Univ. Press, 1998)
Zhang, Y. Diffusion in minerals and melts: theoretical background. Rev. Mineral. Geochem. 72, 5–59 (2010)
Dohmen, R., Becker, H.-W., Meißner, E., Etzel, T. & Chakraborty, S. Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. Eur. J. Mineral. 14, 1155–1168 (2002)
Cherniak, D. Cation diffusion in feldspars. Rev. Mineral. Geochem. 72, 691–733 (2010)
Costa, F., Coogan, L. & Chakraborty, S. The time scales of magma mixing and mingling involving primitive melts and melt–mush interaction at mid-ocean ridges. Contrib. Mineral. Petrol. 159, 371–387 (2010)
Costa, F. & Morgan, D. in Timescales of Magmatic Processes: from Core to Atmosphere (eds Dosseto, A., Turner, S. P. & Van Orman, J. A ) 125–159 (Wiley-Blackwell, 2010)
Acknowledgements
This study was funded partly by the French Agence National de Recherche (ANR STOMIXAN, contract no. ANR-08CEA080, to B.S.). We are grateful to R. Armstrong, P. Crançon and R. Girardin for their contributions during the early stages of this study, and to J. Blundy and M. Reid for reviews. This is Laboratory of Excellence ClerVolc contribution no. 1.
Author information
Authors and Affiliations
Contributions
T.H.D. defined the project strategy, analysed the data and wrote the first draft of the manuscript, which was then revised by all the authors. E.D., M.D. and T.H.D. made the trace-element analyses, F.C. did the diffusion modelling and B.S. performed the fluid dynamic calculations.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Figures 1-6 with legends, Supplementary Tables 1-3, a Supplementary Discussion and additional references. (PDF 669 kb)
Rights and permissions
About this article
Cite this article
Druitt, T., Costa, F., Deloule, E. et al. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012). https://doi.org/10.1038/nature10706
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature10706