Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation

Abstract

The multilineage differentiation capacity of mouse embryonic stem (ES) cells offers a potential testing platform for gene products that mediate mammalian lineage determination and cellular specialization. Identification of such differentiation regulators is crucial to harnessing ES cells for pharmaceutical discovery and cell therapy. Here we describe the use of episomal expression technology for functional evaluation of cDNA clones during ES-cell differentiation in vitro. Several candidate cDNAs identified by subtractive cloning and expression profiling were introduced into ES cells in episomal expression constructs. Subsequent differentiation revealed that the Wnt antagonist Sfrp2 stimulates production of neural progenitors. The significance of this observation was substantiated by forced expression of Wnt-1 and treatment with lithium chloride, both of which inhibit neural differentiation. These findings reveal the importance of Wnt signaling in regulating ES-cell lineage diversification. More generally, this study establishes a path for rapid and direct validation of candidate genes in ES cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental overview.
Figure 2: Expression of selected cDNAs in the embryonic CNS.
Figure 3: Effect of Sfrp2 expression in E14/T cells during ES cell differentiation.
Figure 4: Effect of forced expression of Sfrp2 on differentiation of Sox1-GFP ES cells.
Figure 5: Wnt activity suppresses neural differentiation.

Similar content being viewed by others

References

  1. Smith, A. in Stem Cell Biology (eds. Marshak, D. R., Gardner, R. L & Gottlieb, D.) 205–230 (Cold Spring Harbor Laboratory Press, New York, 2001).

    Google Scholar 

  2. Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

  3. Keller, G.M. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869 (1995).

    CAS  PubMed  Google Scholar 

  4. Smith, A.G. Embryo-derived stem cells: of mice and men. Ann. Rev. Cell Dev. Biol. 17, 435–462 (2001).

    CAS  Google Scholar 

  5. Fraichard, A. et al. In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181–3188 (1995).

    CAS  PubMed  Google Scholar 

  6. Bain, G., Kitchens, D., Yao, M., Huettner, J.E. & Gottlieb, D.I. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357 (1995).

    CAS  PubMed  Google Scholar 

  7. Strubing, C. et al. Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287 (1995).

    CAS  PubMed  Google Scholar 

  8. Li, M., Pevny, L., Lovell-Badge, R. & Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974 (1998).

    CAS  PubMed  Google Scholar 

  9. Pevny, L.H. & Lovell-Badge, R. Sox genes find their feet. Curr. Opin. Genet. Dev. 7, 338–344 (1997).

    CAS  PubMed  Google Scholar 

  10. Pevny, L.H., Sockanathan, S., Placzek, M. & Lovell-Badge, R. A role for Sox-1 in neural determination. Development 125, 1967–1978 (1998).

    CAS  PubMed  Google Scholar 

  11. Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    CAS  PubMed  Google Scholar 

  12. Diatchenko, L. et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030 (1996).

    CAS  PubMed  Google Scholar 

  13. Li, M. in Embryonic Stem Cells: Methods and Protocols Vol. 185 (ed. Turksen, K.) 205–215 (Humana Press, Totowa, NJ, 2001).

    Google Scholar 

  14. Oulad-Abdelghani, M. et al. Meis2, a novel mouse Pbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Dev. Dyn. 210, 173–183 (1997).

    CAS  PubMed  Google Scholar 

  15. Leimeister, C., Bach, A. & Gessler, M. Developmental expression patterns of mouse sFRP genes encoding members of the secreted frizzled-related protein family. Mech. Dev. 75, 29–42 (1998).

    CAS  PubMed  Google Scholar 

  16. Nagai, T. et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev. Biol. 182, 299–313 (1997).

    CAS  PubMed  Google Scholar 

  17. Uwanogho, D. et al. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23–36 (1995).

    CAS  PubMed  Google Scholar 

  18. Hargrave, M. et al. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio–mesenchymal induction. Dev. Dyn. 210, 79–86 (1997).

    CAS  PubMed  Google Scholar 

  19. Cheung, M., Abu-Elmagd, M., Clevers, H. & Scotting, P.J. Roles of Sox4 in central nervous system development. Mol. Brain Res. 79, 180–191 (2000).

    CAS  PubMed  Google Scholar 

  20. Furushima, K., Murata, T., Matsuo, I. & Aizawa, S. A new murine zinc finger gene. Opr. Mech. Dev. 98, 161–164 (2000).

    CAS  PubMed  Google Scholar 

  21. Caubit, X. et al. Vertebrate orthologues of the Drosophila region-specific patterning gene teashirt. Mech. Dev. 91, 445–448 (2000).

    CAS  PubMed  Google Scholar 

  22. Cox, G.A., Mahaffey, C.L., Nystuen, A., Letts, V.A. & Frankel, W.N. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development. Nat. Genet. 26, 198–202 (2000).

    CAS  PubMed  Google Scholar 

  23. Kiss, H. et al. A novel gene containing LIM domains (LIMD1) is located within the common eliminated region 1 (C3CER1) in 3p21.3. Hum. Genet. 105, 552–559 (1999).

    CAS  PubMed  Google Scholar 

  24. Zhang, W.J. & Wu, J.Y. Sip-1, a novel RS domain-containing protein essential for pre-mRNA splicing. Mol. Cell. Biol. 18, 676–684 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Studler, J.M., Glowinski, J. & Levi-Strauss, M. An abundant mRNA of the embryonic brain persists at a high level in cerebellum, hippocampus and olfactory bulb during adulthood. Eur. J. Neurosci. 5, 614–623 (1993).

    CAS  PubMed  Google Scholar 

  26. Rattner, A. et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Natl. Acad. Sci. USA 94, 2859–2863 (1997).

    CAS  PubMed  Google Scholar 

  27. Gassmann, M., Donoho, G. & Berg, P. Maintenance of an extrachromosomal plasmid vector in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 92, 1292–1296 (1995).

    CAS  PubMed  Google Scholar 

  28. Camenisch, G. et al. A polyoma-based episomal vector efficiently expresses exogenous genes in mouse embryonic stem cells. Nucleic Acids Res. 24, 3707–3713 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Niwa, H., Burdon, T., Chambers, I. & Smith, A.G. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Niwa, H., Masui, S., Chambers, I., Smith, A.G. & Miyazaki, J. Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol. Cell. Biol. 22, 1526–1536 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sommer, L., Ma, Q. & Anderson, D.J. Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 (1996).

    CAS  PubMed  Google Scholar 

  32. Walther, C. & Gruss, P. Pax6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  PubMed  Google Scholar 

  33. Jostes, B., Walther, C. & Gruss, P. The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech. Dev. 33, 27–37 (1990).

    CAS  PubMed  Google Scholar 

  34. Conti, L. et al. Shc signaling in differentiating neural progenitor cells. Nat. Neurosci. 4, 579–586 (2001).

    CAS  PubMed  Google Scholar 

  35. Lee, C.S., Buttitta, L.A., May, N.R., Kispert, A. & Fan, C.M. SHH-N upregulates Sfrp2 to mediate its competitive interaction with WNT1 and WNT4 in the somitic mesoderm. Development 127, 109–118 (2000).

    CAS  PubMed  Google Scholar 

  36. Lescher, B., Haenig, B. & Kispert, A. sFRP-2 is a target of the Wnt-4 signaling pathway in the developing metanephric kidney. Dev. Dyn. 213, 440–451 (1998).

    CAS  PubMed  Google Scholar 

  37. Ladher, R.K. et al. Cloning and expression of the Wnt antagonists Sfrp-2 and Frzb during chick development. Dev. Biol. 218, 183–198 (2000).

    CAS  PubMed  Google Scholar 

  38. Melkonyan, H.S. et al. SARPs: a family of secreted apoptosis-related proteins. Proc. Natl. Acad. Sci. USA 94, 13636–13641 (1997).

    CAS  PubMed  Google Scholar 

  39. Finch, P.W. et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc. Natl. Acad. Sci. USA 94, 6770–6775 (1997).

    CAS  PubMed  Google Scholar 

  40. Salic, A.N., Kroll, K.L., Evans, L.M. & Kirschner, M.W. Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124, 4739–4748 (1997).

    CAS  PubMed  Google Scholar 

  41. Chang, J.T. et al. Cloning and characterization of a secreted frizzled-related protein that is expressed by the retinal pigment epithelium. Hum. Mol. Genet. 8, 575–583 (1999).

    CAS  PubMed  Google Scholar 

  42. Yamaguchi, T.P. Heads or tails: Wnts and anterior–posterior patterning. Curr. Biol. 11, R713–R724 (2001).

    CAS  PubMed  Google Scholar 

  43. Easwaran, V., Pishvaian, M., Salimuddin & Byers, S. Cross-regulation of β-catenin-LEF/TCF and retinoid signaling pathways. Curr. Biol. 9, 1415–1418 (1999).

    CAS  PubMed  Google Scholar 

  44. Yoshikawa, Y., Fujimori, T., McMahon, A.P. & Takada, S. Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse. Dev. Biol. 183, 234–242 (1997).

    CAS  PubMed  Google Scholar 

  45. Galceran, J., Farinas, I., Depew, M.J., Clevers, H. & Grosschedl, R. Wnt3a(−/−)-like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev. 13, 709–717 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamaguchi, T.P., Takada, S., Yoshikawa, Y., Wu, N. & McMahon, A.P. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev. 13, 3185–3190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Roth, W. et al. Secreted Frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene 19, 4210–4220 (2000).

    CAS  PubMed  Google Scholar 

  48. Ellies, D.L., Church, V., Francis-West, P. & Lumsden, A. The WNT antagonist cSFRP2 modulates programmed cell death in the developing hindbrain. Development 127, 5285–5295 (2000).

    CAS  PubMed  Google Scholar 

  49. Hooper, M.L., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    CAS  PubMed  Google Scholar 

  50. Smith, A.G. Culture and differentiation of embryonic stem cells. J. Tiss. Cult. Methods 13, 89–94 (1991).

    Google Scholar 

Download references

Acknowledgements

We thank Marios Stavridis for 46C ES cells, and Meng Li, Jenny Nichols, Tom Burdon, and Joe Mee for advice and discussion. This research was supported by the Medical Research Council and the Biotechnology and Biological Sciences Research Council of the UK. J.A. was supported by an INSERM fellowship and a Marie Curie EU Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin Smith.

Ethics declarations

Competing interests

A.S. is a scientific advisor to Stem Cell Sciences Ltd. and holds non-voting equity in the company. Stem Cell Sciences funds research in the laboratory and has patents pending on technology used in the work described in this article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, J., Dunstan, H., Chambers, I. et al. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 20, 1240–1245 (2002). https://doi.org/10.1038/nbt763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt763

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing