Abstract
Regulated activation of integrins is critical for cell adhesion, motility and tissue homeostasis. Talin and kindlins activate β1-integrins, but the counteracting inhibiting mechanisms are poorly defined. We identified SHARPIN as an important inactivator of β1-integrins in an RNAi screen. SHARPIN inhibited β1-integrin functions in human cancer cells and primary leukocytes. Fibroblasts, leukocytes and keratinocytes from SHARPIN-deficient mice exhibited increased β1-integrin activity, which was fully rescued by re-expression of SHARPIN. We found that SHARPIN directly binds to a conserved cytoplasmic region of integrin α-subunits and inhibits recruitment of talin and kindlin to the integrin. Therefore, SHARPIN inhibits the critical switching of β1-integrins from inactive to active conformations.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).
Moser, M., Legate, K. R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).
Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).
Larjava, H., Plow, E. F. & Wu, C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep. 9, 1203–1208 (2008).
Margadant, C., Charafeddine, R. A. & Sonnenberg, A. Unique and redundant functions of integrins in the epidermis. FASEB J. 24, 4133–4152 (2010).
Cantor, J. M., Ginsberg, M. H. & Rose, D. M. Integrin-associated proteins as potential therapeutic targets. Immunol. Rev. 223, 236–251 (2008).
Hogg, N. & Bates, P. A. Genetic analysis of integrin function in man: LAD-1 and other syndromes. Matrix Biol. 19, 211–222 (2000).
Evans, R. et al. Integrins in immunity. J. Cell Sci. 122, 215–225 (2009).
Calderwood, D. A. Integrin activation. J. Cell Sci. 117, 657–666 (2004).
Lim, S. et al. Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol. Cell. Neurosci. 17, 385–397 (2001).
Byron, A. et al. Anti-integrin monoclonal antibodies. J. Cell Sci. 122, 4009–4011 (2009).
Taliaferro-Smith, L. et al. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene 28, 2621–2633 (2009).
Ewart, M. A., Kohlhaas, C. F. & Salt, I. P. Inhibition of tumor necrosis factor α-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler. Thromb. Vasc. Biol. 28, 2255–2257 (2008).
Guo, D. L. et al. Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis 27, 454–464 (2006).
Huusko, P. et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat. Genet. 36, 979–983 (2004).
Zou, J. X. et al. An Eph receptor regulates integrin activity through R-Ras. Proc. Natl Acad. Sci. USA 96, 13813–13818 (1999).
Ivaska, J. et al. Integrin–protein kinase C relationships. Biochem. Soc. Trans. 31, 90–93 (2003).
Harper, M. T. & Poole, A. W. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J. Thromb. Haemost. 8, 454–462 (2010).
Jung, J. et al. Newly identified tumor-associated role of human Sharpin. Mol. Cell. Biochem. 340, 161–167 (2010).
Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002).
Schwartz, M. A. & Assoian, R. K. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 114, 2553–2560 (2001).
Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).
Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell–substratum adhesiveness. Nature 385, 537–540 (1997).
Kiema, T. et al. The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell 21, 337–347 (2006).
Anthis, N. J. et al. β integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J. Biol. Chem. 284, 36700–36710 (2009).
Elliott, P. R. et al. The structure of the talin head reveals a novel extended conformation of the FERM domain. Structure 18, 1289–1299 (2010).
Hughes, P. E. et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J. Biol. Chem. 271, 6571–6574 (1996).
LaFlamme, S. E., Akiyama, S. K. & Yamada, K. M. Regulation of fibronectin receptor distribution. J. Cell Biol. 117, 437–447 (1992).
Chen, Y. P. et al. ‘Inside-out’ signal transduction inhibited by isolated integrin cytoplasmic domains. J. Biol. Chem. 269, 18307–18310 (1994).
Parsons, M., Messent, A. J., Humphries, J. D., Deakin, N. O. & Humphries, M. J. Quantification of integrin receptor agonism by fluorescence lifetime imaging. J. Cell Sci. 121, 265–271 (2008).
Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).
Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).
Harburger, D. S., Bouaouina, M. & Calderwood, D. A. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J. Biol. Chem. 284, 11485–11497 (2009).
Ma, Y. Q., Qin, J., Wu, C. & Plow, E. F. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J. Cell Biol. 181, 439–446 (2008).
Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).
Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).
Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).
Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).
Tuomi, S. et al. PKCε regulation of an α5 integrin-ZO-1 complex controls lamellae formation in migrating cancer cells. Sci. Signal. 2, ra32 (2009).
Askari, J. A. et al. Focal adhesions are sites of integrin extension. J. Cell Biol. 188, 891–903 (2010).
Liang, Y., Seymour, R. E. & Sundberg, J. P. Inhibition of NF-κB signaling retards eosinophilic dermatitis in SHARPIN-deficient mice. J. Invest. Dermatol. 131, 141–149 (2011).
Seymour, R. E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416–421 (2007).
Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132 (2009).
Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell 128, 171–182 (2007).
Millon-Fremillon, A. et al. Cell adaptive response to extracellular matrix density is controlled by ICAP-1-dependent β1-integrin affinity. J. Cell Biol. 180, 427–441 (2008).
Nevo, J. et al. Mammary-derived growth inhibitor (MDGI) interacts with integrin α-subunits and suppresses integrin activity and invasion. Oncogene 29, 6452–6463 (2010).
Clark, A. J., Neil, C., Gusterson, B., McWhir, J. & Binas, B. Deletion of the gene encoding H-FABP/MDGI has no overt effects in the mammary gland. Transgenic Res. 9, 439–444 (2000).
Legate, K. R., Wickstrom, S. A. & Fassler, R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23, 397–418 (2009).
He, L., Ingram, A., Rybak, A. P. & Tang, D. Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J. Clin. Invest. 120, 2094–2108 (2010).
Landgraf, K. et al. Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development. Mol. Cell. Biol. 30, 5764–5775 (2010).
Gustin, J. A., Maehama, T., Dixon, J. E. & Donner, D. B. The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor κB activity. J. Biol. Chem. 276, 27740–27744 (2001).
Kilpinen, S. et al. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol. 9, R139 (2008).
O’Toole, T. E. et al. Modulation of the affinity of integrin α IIb β3 (GPIIb-IIIa) by the cytoplasmic domain of α IIb. Science 254, 845–847 (1991).
Rantala, J. K. et al. A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics 12, 162 (2011).
Kraemer, A. et al. Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1. J. Mol. Biol. 306, 1167–1177 (2001).
Clark, K. et al. A specific α5β1-integrin conformation promotes directionalintegrin translocation and fibronectin matrix formation. J. Cell Sci. 118, 291–300 (2005).
Hogan, B. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1986).
Laukaitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).
Caswell, P. T. et al. Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007).
Acknowledgements
We thank H. Marttila, J. Siivonen, L. Lahtinen, R. Kaukonen, E. Väänänen, K. Silva and A. Arola for technical assistance. P.R. Elliot is acknowledged for the recombinant talin 1–400 protein. R. Fässler, M. Ginsberg, J. Norman and S. Lee are acknowledged for the plasmids. This study has been supported by the Academy of Finland, EU-FP06 project ENLIGHT, a European Research Council Starting Grant, the Sigrid Juselius Foundation, the European Molecular Biology Organization (EMBO) Young Investigator Programme and Finnish Cancer Organizations. J.P. and E.M., Academy of Finland postdoc grant; T.P., Turku Graduate School of Biomedical Sciences; S.V., Alexander von Humbold foundation and an EMBO long-term fellowship. C.S.P. and J.P.S were supported by the National Institutes of Health (T32 DK07449-28 to C.S.P. and AR49288 to J.P.S.).
Author information
Authors and Affiliations
Contributions
J.K.R. and O.K. developed cell spot microarrays, J.K.R. and T.P. carried out the screen. J.K.R., J.P., P.L., S.V. and J.I. carried out the experiments. E.M. immortalized the MEFs. M.P. carried out the FRET-FLIM, C.S.P, T.D. and J.P.S. contributed to the mouse data, J.A.A. and M.J.H. contributed to the legs together integrin experiments and M.S. contributed to the leukocyte work. J.P., J.I. and M.S. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 694 kb)
Supplementary Table 1
Supplementary Information (XLS 31 kb)
Supplementary Table 2
Supplementary Information (XLS 32 kb)
Rights and permissions
About this article
Cite this article
Rantala, J., Pouwels, J., Pellinen, T. et al. SHARPIN is an endogenous inhibitor of β1-integrin activation. Nat Cell Biol 13, 1315–1324 (2011). https://doi.org/10.1038/ncb2340
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ncb2340