Abstract
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 × 10−8): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Flegal, K.M., Graubard, B.I., Williamson, D.F. & Gail, M.H. Cause-specific excess deaths associated with underweight, overweight, and obesity. J. Am. Med. Assoc. 298, 2028–2037 (2007).
Finkelstein, E.A. et al. The lifetime medical cost burden of overweight and obesity: implications for obesity prevention. Obesity (Silver Spring) 16, 1843–1848 (2008).
Maes, H.H., Neale, M.C. & Eaves, L.J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–351 (1997).
Atwood, L.D. et al. Genomewide linkage analysis of body mass index across 28 years of the Framingham Heart Study. Am. J. Hum. Genet. 71, 1044–1050 (2002).
Farooqi, I.S. Genetic aspects of severe childhood obesity. Pediatr. Endocrinol. Rev. 3 (Suppl. 4), 528–536 (2006).
Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).
Frayling, T.M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).
Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39, 724–726 (2007).
Loos, R.J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).
Chambers, J.C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat. Genet. 40, 716–718 (2008).
Benzinou, M. et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat. Genet. 40, 943–945 (2008).
Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. advance online publication, doi:10.1038/ng.274 (14 December 2008).
Herbert, A. et al. A common genetic variant is associated with adult and childhood obesity. Science 312, 279–283 (2006).
Liu, Y.J. et al. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum. Mol. Genet. 17, 1803–1813 (2008).
Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).
Willer, C.J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).
Samani, N.J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).
Freathy, R.M. et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes 57, 1419–1426 (2008).
McCarroll, S.A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 40, 1166–1174 (2008).
Ren, D. et al. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J. Clin. Invest. 117, 397–406 (2007).
Pagliarini, D.J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).
Grinberg, M. et al. Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor alpha. Mol. Cell. Biol. 25, 4579–4590 (2005).
Marg, A. et al. Neurotractin, a novel neurite outgrowth-promoting Ig-like protein that interacts with CEPU-1 and LAMP. J. Cell Biol. 145, 865–876 (1999).
Schafer, M., Brauer, A.U., Savaskan, N.E., Rathjen, F.G. & Brummendorf, T. Neurotractin/kilon promotes neurite outgrowth and is expressed on reactive astrocytes after entorhinal cortex lesion. Mol. Cell. Neurosci. 29, 580–590 (2005).
Rankinen, T. et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14, 529–644 (2006).
Myers, A.J. et al. A survey of genetic human cortical gene expression. Nat. Genet. 39, 1494–1499 (2007).
Bramham, C.R. & Messaoudi, E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog. Neurobiol. 76, 99–125 (2005).
Unger, T.J., Calderon, G.A., Bradley, L.C., Sena-Esteves, M. & Rios, M. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J. Neurosci. 27, 14265–14274 (2007).
Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).
Marsh, D.J. et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 21, 119–122 (1999).
Stratigopoulos, G. et al. Regulation of Fto/Ftm gene expression in mice and humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1185–R1196 (2008).
Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).
Li, Z., Zhou, Y., Carter-Su, C., Myers, M.G. Jr & Rui, L. SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and -independent mechanisms. Mol. Endocrinol. 21, 2270–2281 (2007).
Fritschy, J.M. & Mohler, H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995).
Fehr, C. et al. Confirmation of association of the GABRA2 gene with alcohol dependence by subtype-specific analysis. Psychiatr. Genet. 16, 9–17 (2006).
Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M. & Kranzler, H.R. Allelic and haplotypic association of GABRA2 with alcohol dependence. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 129B, 104–109 (2004).
Edenberg, H.J. et al. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Hum. Genet. 74, 705–714 (2004).
Berthoud, H.R. & Morrison, C. The brain, appetite, and obesity. Annu. Rev. Psychol. 59, 55–92 (2008).
Cartegni, L., Wang, J., Zhu, Z., Zhang, M.Q. & Krainer, A.R. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 3568–3571 (2003).
Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 20, 1785–1796 (2001).
Dixon, A.L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).
Weedon, M.N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40, 575–583 (2008).
Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40, 584–591 (2008).
Winckler, W. et al. Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes 56, 685–693 (2007).
Bonnycastle, L.L. et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes 55, 2534–2540 (2006).
Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).
Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).
Chen, W.M. & Abecasis, G.R. Family-based association tests for genomewide association scans. Am. J. Hum. Genet. 81, 913–926 (2007).
Acknowledgements
We are extremely grateful to all of the participants in each of the studies contributing to this effort. Full acknowledgments can be found in the Supplementary Note.
Support for this research was provided by: US National Institutes of Health grants CA65725, CA87969, CA49449, CA67262, CA50385, DK062370, DK072193, DK075787, HG02651, HL084729, HL087679 (through STAMPEED, 1RL1MH083268), 5UO1CA098233, 1Z01 HG000024, 1RL1MH083268, T32 DK07191, F32 DK079466, K23 DK080145, K23 DK067288, CIDR NIH Contract Number N01-HG-65403, NIA contract NO1-AG-1-2109; the Intramural Research Program of the Division of Cancer Epidemiology and Genetics; contracts from the Division of Cancer Prevention, National Cancer Institute and EU FP6 funding (contract no LSHM-CT-2003-503041); GlaxoSmithKline; the Faculty of Biology and Medicine of Lausanne, Switzerland; the Intramural Research Program of the National Institute on Aging (NIA); Cancer Research United Kingdom; the UK Medical Research Council (including grants G0000649, G0000934 and G0601261); the Wellcome Trust (including Strategic Award 076113, grants 068545/Z/02 and 076467/Z/05/Z); the NIHR through the Biomedical Research Centres at Oxford, King's College London; Guys and St. Thomas' Foundation Hospitals' Trust; the British Heart Foundation (including grant FS/05/061/19501), European Community's Seventh Framework Programme (ENGAGE:HEALTH-F4-2007-201413); Diabetes UK; Unilever Corporate Research; American Diabetes Association including a Smith Family Foundation Pinnacle Program Project Award #7-03-PPG-04R; the Academy of Finland (grants 118065 and 124243); National Genome Research Net Germany; Munich Center of Health Sciences (MC Health) as part of LMUinnovativ; the Helmholtz Center Munich; the Sigrid Juselius Foundation; University of Bristol; Linné grant from Swedish Research Council; Wallenberg Foundation; Folkhälsan Research Foundation; University of Southampton; Netherlands Organisation of Scientific Research NWO (nr. 175.010.2005.011); Erasmus Medical Center and Erasmus University, Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); the Netherlands Ministry of Education, Culture and Science; the Netherlands Ministry for Health, Welfare and Sports; the European Commision (DG XII) and the Municipality of Rotterdam. G.R.A. and K.L.M. are Pew Scholars for the Biomedical Sciences; A.L.E. is supported by a Sarnoff Cardiovascular Research Foundation Fellowship; C.M.L. is a Nuffield Department of Medicine Scientific Leadership Fellow; S.A.M. is supported by a Life Sciences Research Fellowship; M.K. is supported by the Finnish Cultural Foundation; N.J.S. holds a BHF Chair; M.N.W. is a Vandervell Foundation Research Fellow; C.J.W. is supported by an American Diabetes Association postdoctoral fellowship; and E.Z. is a Wellcome Trust-RD Fellow (grant number 079557).
Author information
Authors and Affiliations
Consortia
Contributions
The writing team consisted of G.R.A., I.B., M.B., I.M.H., J.N.H., S.L., C.M.L., R.J.F.L., M.I.McC., E.K.S. and C.J.W. Full author contributions and roles are listed in the Supplementary Note.
Corresponding authors
Ethics declarations
Competing interests
Peter Vollenweider and Gérard Waeber received financial support from GlaxoSmithKline to build the CoLaus study; Dawn Waterworth, Kijoung Song, Noha Lim and Vincent Mooser are full-time employees of GlaxoSmithKline (GSK); Inês Barroso owns stock in the companies GlaxoSmithKline (CSK) and Incyte (INCY).
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–5, Supplementary Tables 1–9 and Supplementary Note (PDF 1940 kb)
Rights and permissions
About this article
Cite this article
the GIANT Consortium. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41, 25–34 (2009). https://doi.org/10.1038/ng.287
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.287