Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association study identifies five loci associated with lung function

Abstract

Pulmonary function measures are heritable traits that predict morbidity and mortality and define chronic obstructive pulmonary disease (COPD). We tested genome-wide association with forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in the SpiroMeta consortium (n = 20,288 individuals of European ancestry). We conducted a meta-analysis of top signals with data from direct genotyping (n ≤ 32,184 additional individuals) and in silico summary association data from the CHARGE Consortium (n = 21,209) and the Health 2000 survey (n ≤ 883). We confirmed the reported locus at 4q31 and identified associations with FEV1 or FEV1/FVC and common variants at five additional loci: 2q35 in TNS1 (P = 1.11 × 10−12), 4q24 in GSTCD (2.18 × 10−23), 5q33 in HTR4 (P = 4.29 × 10−9), 6p21 in AGER (P = 3.07 × 10−15) and 15q23 in THSD4 (P = 7.24 × 10−15). mRNA analyses showed expression of TNS1, GSTCD, AGER, HTR4 and THSD4 in human lung tissue. These associations offer mechanistic insight into pulmonary function regulation and indicate potential targets for interventions to alleviate respiratory disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plots of association results for FEV1 and FEV1/FVC (analysis stage 1).
Figure 2: Regional association plots of six lung function–associated loci.
Figure 3: Forest plots of the stage 1 meta-analysis for the six lung function–associated loci.

Similar content being viewed by others

References

  1. Myint, P.K. et al. Respiratory function and self-reported functional health: EPIC-Norfolk population study. Eur. Respir. J. 26, 494–502 (2005).

    Article  CAS  Google Scholar 

  2. Schünemann, H.J., Dorn, J., Grant, B.J., Winkelstein, W. Jr. & Trevisan, M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest 118, 656–664 (2000).

    Article  Google Scholar 

  3. Strachan, D.P. Ventilatory function, height, and mortality among lifelong non-smokers. J. Epidemiol. Community Health 46, 66–70 (1992).

    Article  CAS  Google Scholar 

  4. Young, R.P., Hopkins, R. & Eaton, T.E. Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes. Eur. Respir. J. 30, 616–622 (2007).

    Article  CAS  Google Scholar 

  5. Hubert, H.B., Fabsitz, R.R., Feinleib, M. & Gwinn, C. Genetic and environmental influences on pulmonary function in adult twins. Am. Rev. Respir. Dis. 125, 409–415 (1982).

    CAS  PubMed  Google Scholar 

  6. McClearn, G.E., Svartengren, M., Pedersen, N.L., Heller, D.A. & Plomin, R. Genetic and environmental influences on pulmonary function in aging Swedish twins. J. Gerontol. 49, 264–268 (1994).

    Article  CAS  Google Scholar 

  7. Lewitter, F.I., Tager, I.B., McGue, M., Tishler, P.V. & Speizer, F.E. Genetic and environmental determinants of level of pulmonary function. Am. J. Epidemiol. 120, 518–530 (1984).

    Article  CAS  Google Scholar 

  8. Palmer, L.J. et al. Familial aggregation and heritability of adult lung function: results from the Busselton Health Study. Eur. Respir. J. 17, 696–702 (2001).

    Article  CAS  Google Scholar 

  9. Loos, R.J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).

    Article  CAS  Google Scholar 

  10. Pillai, S.G. et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 5, e1000421 (2009).

    Article  Google Scholar 

  11. Wilk, J.B. et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 5, e1000429 (2009).

    Article  Google Scholar 

  12. McCarthy, M.I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  CAS  Google Scholar 

  13. Miller, L.-A.D. et al. Role of Sonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev. Dyn. 231, 57–71 (2004).

    Article  CAS  Google Scholar 

  14. Hayes, J.D., Flanagan, J.U. & Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45, 51–88 (2005).

    Article  CAS  Google Scholar 

  15. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).

    Article  CAS  Google Scholar 

  16. Weigt, C., Gaertner, A., Wegner, A., Korte, H. & Meyer, H.E. Occurrence of an actin-inserting domain in tensin. J. Mol. Biol. 227, 593–595 (1992).

    Article  CAS  Google Scholar 

  17. Chen, H., Duncan, I.C., Bozorgchami, H. & Lo, S.H. Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proc. Natl. Acad. Sci. USA 99, 733–738 (2002).

    Article  CAS  Google Scholar 

  18. Manzke, T. et al. 5–HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301, 226–229 (2003).

    Article  CAS  Google Scholar 

  19. Dupont, L.J. et al. The effects of 5-HT on cholinergic contraction in human airways in vitro. Eur. Respir. J. 14, 642–649 (1999).

    Article  CAS  Google Scholar 

  20. Bayer, H. et al. Serotoninergic receptors on human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 36, 85–93 (2007).

    Article  CAS  Google Scholar 

  21. Mägert, H.J. et al. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J. Biol. Chem. 274, 21499–21502 (1999).

    Article  Google Scholar 

  22. Kipreos, E.T. & Pagano, M. The F-box protein family. Genome Biol. 1, REVIEWS3002 (2000).

    Article  CAS  Google Scholar 

  23. Sparvero, L.J. et al. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J. Transl. Med. 7, 17 (2009).

    Article  Google Scholar 

  24. Fehrenbach, H. et al. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell. Mol. Biol. 44, 1147–1157 (1998).

    CAS  PubMed  Google Scholar 

  25. Konishi, K. et al. Gene expression profiles of acute exacerbations of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 180, 167–175 (2009).

    Article  CAS  Google Scholar 

  26. Englert, J.M. et al. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am. J. Pathol. 172, 583–591 (2008).

    Article  CAS  Google Scholar 

  27. Fortini, M.E. Notch signaling: the core pathway and its posttranslational regulation. Dev. Cell 16, 633–647 (2009).

    Article  CAS  Google Scholar 

  28. Favre, C.J. et al. Expression of genes involved in vascular development and angiogenesis in endothelial cells of adult lung. Am. J. Physiol. Heart Circ. Physiol. 285, H1917–H1938 (2003).

    Article  CAS  Google Scholar 

  29. Chen, H., Herndon, M.E. & Lawler, J. The cell biology of thrombospondin-1. Matrix Biol. 19, 597–614 (2000).

    Article  CAS  Google Scholar 

  30. Hancock, D.B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. advance online publication, doi:10.1038/ng.500 (13 December 2009).

  31. Thorgeirsson, T.E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  Google Scholar 

  32. Uhl, G.R. et al. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch. Gen. Psychiatry 65, 683–693 (2008).

    Article  CAS  Google Scholar 

  33. Weedon, M.N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40, 575–583 (2008).

    Article  CAS  Google Scholar 

  34. Gudbjartsson, D.F. et al. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40, 609–615 (2008).

    Article  CAS  Google Scholar 

  35. Kohansal, R. et al. The natural history of chronic airflow obstruction revisited: an analysis of the framingham offspring cohort. Am. J. Respir. Crit. Care Med. 180, 3–10 (2009).

    Article  Google Scholar 

  36. Li, Y. & Abecasis, G.R. Mach 1.0: Rapid haplotype reconstruction and missing genotype inference. Am. J. Hum. Genet. S79, 2290 (2006).

    Google Scholar 

  37. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  Google Scholar 

  38. Guan, Y. & Stephens, M. Practical issues in imputation-based association mapping. PLoS Genet. 4, e1000279 (2008).

    Article  Google Scholar 

  39. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    Article  CAS  Google Scholar 

  40. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  41. Sayers, I., Swan, C. & Hall, I.P. The effect of beta2-adrenoceptor agonists on phospholipase C (beta1) signalling in human airway smooth muscle cells. Eur. J. Pharmacol. 531, 9–12 (2006).

    Article  CAS  Google Scholar 

  42. Wadsworth, S.J., Nijmeh, H.S. & Hall, I.P. Glucocorticoids increase repair potential in a novel in vitro human airway epithelial wounding model. J. Clin. Immunol. 26, 376–387 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the many colleagues who contributed to collection and phenotypic characterization of the clinical sampling, genotyping and analysis of the GWAS data. We especially thank those who kindly agreed to participate in the studies.

Major funding for this work is from the following sources (in alphabetical order): Academy of Finland (including project grants 104781, 120315 and 1114194) and Center of Excellence in Complex Disease Genetics; Arthritis Research Campaign; Asthma UK; AstraZeneca; Biocenter Oulu, University of Oulu; Biocentrum Helsinki; Biotechnology and Biological Sciences Research Council project grant; British Heart Foundation (including project grants PG/06/154/22043 and PG/97012 and Senior Research Fellowship FS05/125); British Lung Foundation; Cancer Research United Kingdom; Chief Scientists Office, part of the Scottish Government Health Directorate (including grant CZD/16/6); Department of Health Air Pollution PRP (ref. no. 0020029); ENGAGE project (HEALTH-F4-2007-201413); European Commission (EURO-BLCS, FP-5/QLG1-CT-2000-01643, FP-7/2007-2013, FP-6 LSHB-CT-2006-018996 (GABRIEL), FP-6 LSHG-CT-2006-01947 (EUROSPAN), HEALTH-F2-2008-201865-GEFOS and FP-5 GenomEUtwin project QLG2-CT-2002-01254); Finnish Ministry of Education; German Federal Ministry of Education and Research (BMBF, including grants 01ZZ96030, 01ZZ0701 and 01GI0883 and German Asthma and COPD Network (COSYCONET) grant 01GI0883); German Ministry for Education, Research and Cultural Affairs; German National Genome Research Network (NGFN-2 and NGFN-plus); Healthway, Western Australia; HEFCE Science Research Investment Fund; Helmholtz Zentrum München; German Research Center for Environmental Health, Neuherberg, Germany; International Osteoporosis Foundation; Juvenile Diabetes Research Foundation International; Leicester Biomedical Research Unit in Cardiovascular Science (NIHR); Medical Research Council UK (including grants G0500539, G0501942, G0000943 and G990146); Medical Research Fund of the Tampere University Hospital; Ministry for Social Affairs of the Federal State of Mecklenburg-West Pomerania; MRC Human Genetics Unit; Munich Center of Health Sciences, as part of LMUinnovativ; National Human Genome Research Institute; National Institute for Health Research comprehensive Biomedical Research Centre award to Guy's & St. Thomas' NHS Foundation Trust in partnership with King's College London; National Institute for Health Research Cambridge Biomedical Research Centre; National Institute of Allergy and Infectious Diseases; National Institute of Child Health and Human Development; National Institute of Diabetes and Digestive and Kidney Diseases; National Heart, Lung, and Blood Institute (grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01)); Oulu University Hospital; PHOEBE (FP6, LSHG-CT-2006-518418); Public Population Project in Genomics (Genome Canada and Genome Quebec), Republic of Croatia Ministry of Science, Education and Sports (research grant 108-1080315-0302); Royal Society; Siemens Health Care Sector; Swedish Heart and Lung Foundation (grant 20050561); Swedish Medical Research Council (project no. K2007-66X-20270-01-3); Swedish Research Council for Working Life and Social Research (FAS, grants 2001-0263 and 2003-0139); the Great Wine Estates of the Margaret River region of Western Australia; UBS Wealth Foundation (grant BA29s8Q7-DZZ); UK Department of Health Policy Research Programme; University of Nottingham; University of Bristol; US National Institutes of Health (U01 DK062418); US National Institutes of Health–National Institute of Mental Health (5R01MH63706:02); Wellcome Trust (including grants 068545/Z/02, 076113/B/04/Z, 079895, 077016/Z/05/Z, 075883 and 086160/Z/08/A); and Zentren für Innovationskompetenz (BMBF grant 03ZIK012).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Author contributions are listed in alphabetical order. See Table 1 for definitions of study acronyms.

Project conception, design and management. Stage 1 GWAS, ALSPAC: J. Henderson, R.G. B58C: D.P.S. EPIC: I.B., R.J.F.L., N.J.W., J.H.Z. FTC: J.K., T.R. KORA S3: H.E.W. Korcula: H.C., I.G., S.J., I.R., A.F.W., L.Z. NFBC1966: P.E., M.-R.J., A.P., L.P. NSPHS: U.G. ORCADES: H.C., S.H.W., J.F.W., A.F.W. SHIP: S.G., G.H., B.K., H.V. TwinsUK: T.D.S., G. Zhai. Vis: H.C., C.H., O.P., I.R., A.F.W. Stage 2a follow-up, ADONIX: A.-C.O., K.T. BHS: A.L.J., L.J.P. GS:SFHS: H.C., C.J., A.D.M., D.J.P. HCS: C.C., E.D., J.W.H. KORA F4: S.K, E.S., H.S. NFBC1986: A.-L.H., M.-R.J. Nottingham Smokers: I.P.H., I. Sayers, M.O. NSHD: The NSHD Respiratory Study Team. Stage 2b in silico follow-up, Health 2000: M.H., M.K., L.P.

Phenotype collection and data management. Stage 1 GWAS, ALSPAC: J. Henderson, R.G. B58C: D.P.S., A.R.R. EPIC: N.J.W. FTC: J.K., L.M., T.R. KORA S3: H.E.W. Korcula: I.G., S.J., O.P., I.R., L.Z. NFBC1966: P.E., M.-R.J., A.-L.H., A.P. NSPHS: G. Zaboli. ORCADES: H.C., S.H.W., J.F.W. SHIP: S.G., B.K., H.V. TwinsUK: M.M., T.D.S. Vis: H.C., C.H., O.P., I.R., A.F.W. Stage 2a follow-up, ADONIX: A.-C.O., K.T. BHS: M.N.C., A.L.J., L.J.P. BRHS: R.W.M., S.G.W., P.H.W. BWHHS: G.D.S., S.E., D.A.L., P.H.W. Gedling: J.R.B., T.M.M., I.D.P. GS:SFHS: C.J., D.J.P. HCS: C.C., E.D., S.S. KORA F4: S.K., E.S., H.S. NFBC1986: A.-L.H., M.-R.J. Nottingham Smokers: J.D.B., I.P.H., I. Sayers, M.O. NSHD: The NSHD Respiratory Study Team. Stage 2b in silico follow-up, Health 2000: M.H., M.K.

Genotyping. Stage 1 GWAS, ALSPAC: P.D. B58C: W.L.M., WTCCC. EPIC: I.B., R.J.F.L., N.J.W., J.H.Z. FTC: J.K., I. Surakka. KORA S3: M.I., N.M.P.-H., H.G. NFBC1966: P.E., M.-R.J., L.P. ORCADES: H.C., J.F.W. SHIP: G.H. TwinsUK: N.S. Vis: C.H., I.R., A.F.W. Stage 2a follow-up, ADONIX: A.T.N., F.N. BRHS: A.D.H., R.W.M., P.H.W. GS:SFHS: A.D.M. HCS: C.C., E.D., J.W.H. KORA F4: H.G. NFBC1986: N.B.-N., J.D., P.F., M.-R.J., L.P. Nottingham Smokers: I.P.H. NSHD: D.K., A.W. STAGE 2b in silico follow-up, Health 2000: L.P., S.R., I. Surakka.

Data analysis. Stage 1 GWAS, ALSPAC: D.M.E. B58C: A.R.R. EPIC: R.J.F.L., J.H.Z. FTC: I. Surakka., L.M. KORA S3: E.A., M.I., N.M.P.-H. Korcula: C.H., J.E.H., V.V. NFBC1966: A.R. NSPHS: W.I., A.J. ORCADES: C.H., V.V. SHIP: S.G., G.H., B.K, H.V. TwinsUK: G. Zhai. Vis: C.H., V.V. Stage 2a follow-up, ADONIX: A.T.N., F.N., A.-C.O, K.T. BHS: M.N.C., J. Hui., L.J.P. BRHS: R.W.M. BWHHS: D.A.L. Gedling: M.O., M.D.T. GS:SFHS: A.K.M. HCS: J.W.H., S.S. KORA F4: E.A, H.G. NFBC1986: A.R. Nottingham Smokers: M.O., I. Sayers, M.D.T. NSHD: The NSHD Respiratory Study Team. Stage 2b in silico follow-up, Health 2000: M.K., S.R., I. Surakka.

Meta-analysis group. P.R.B., I.P.H., T.J., E.R., D.P.S., M.D.T., L.V.W.

Bioinformatics and expression profiling groups. I.P.H., M.O., I. Sayers, E.R., M.D.T., L.V.W.

Writing group. P.E., I.P.H., E.R., I. Sayers, D.P.S., M.D.T., L.V.W.

Corresponding authors

Correspondence to Ian P Hall or Martin D Tobin.

Ethics declarations

Competing interests

I.B. and spouse own stock in GlaxoSmithKline and Incyte.

Additional information

A full list of members is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1–4 and 6 and Supplementary Note (PDF 1193 kb)

Supplementary Table 5

List of the top 2000 SNPs for association with FEV1 and FEV1/FVC (XLS 356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repapi, E., Sayers, I., Wain, L. et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet 42, 36–44 (2010). https://doi.org/10.1038/ng.501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.501

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing