Abstract
Cardiac arrhythmias cause sudden death in 300,000 United States citizens every year. In this study, we describe two new loci for an inherited cardiac arrhythmia, long QT syndrome (LQT). In 1991 we reported linkage of LQT to chromosome 11 p15.5. In this study we demonstrate further linkage to D7S483 in nine families with a combined lod score of 19.41 and to D3S1100 in three families with a combined score of 6.72. These findings localize major LQT genes to chromosomes 7q35–36 and 3p21–24, respectively. Linkage to any known locus was excluded in three families indicating that additional heterogeneity exists. Proteins encoded by different LQT genes may interact to modulate cardiac repolarization and arrhythmia risk.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kannel, W.B., Cupples, A. & D'Agostino, R.B. Sudden death risk in overt coronary heart diseases: The Framingham study. Am. Heart J. 113, 799–804 (1987).
Willich, S.N. et al. Circadian variation in the incidence of sudden cardiac death in the Framingham heart study population. Am. J. Cardiol. 60, 801–806 (1987).
Mason, J. A comparison of electrophysiologic testing with hotter monitoring to predict antiarrhythmic-drug efficacy for ventricular tachyarrhythmias. New Engl. J. Med. 329, 445–450 (1993).
Mason, J. A comparison of seven antiarrhythmic drugs in patients with ventricular tachyarrhythmias. New Engl. J. Med. 329, 452–458 (1993).
Myerburg, R.J., Kessler, K.M. & Castellanos, A. Sudden cardiac death: epidemiology, transient risk and intervention assessment. Ann. Intern. Med. 119, 1187–1197 (1993).
Brooks, C.M., Gilbert, J.L., Greenspan, M.E., Lange, G. & Mazzella, H.M. Excitability and electrical response of ischemic heart muscle. Am. J. Physiol. 198, 1143–1147 (1960).
Downar, E., Michiel, J.J. & Durrer, D. The effect of acute coronary artery occlusion on subepicardial transmemebrane potentials in the intact porcine heart. Circulation 56, 217–224 (1977).
Penkoske, P.A., Sobel, B.E., & Corr, P.B. Disparate electrophysiological alterations accompanying dysrhythmia due to coronary occasion and reperf usion in the cat. Circulation 58, 1023–1035 (1978).
Schwartz, P.J. & Wolf, S. QT interval prolongation as predictor of sudden death in patients with myocardial infarction. Circulation 57, 1074–1077 (1978).
Barr, C.S., Naas, A., Freeman, M., Lang, C.C. & Struthet, A.D. QT dispersion and sudden unexpected death in chronic heart failure. Lancet 343, 327–329 (1994).
Day, C.P., McComb, J.M. & Campbell, R.W.F. QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. Br. Heart J. 63, 342–344 (1990).
Vincent, G.M., Abildskov, J.A. & Burgess, M.J. Q-T interval syndromes. Prog. cardiovasc. Dis. 16, 523–5230 (1974).
Schwartz, P.J., Periti, M. & Malliani, A. The long Q-T syndrome. Am. Heart J. 109, 378–390 (1975).
Jervell, A. & Lange-Nielson, F. Congenital deaf mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am. Heart J. 54, 59–78 (1957).
Romano, C., Gemme, G. & Pongiglione, R. Aritmie cardiache rare dell'eta' pediatrica. II. Accessi sincopali per fibrillazione ventricolare parossistica. Clin. Pediatr. (Bologna). 45, 656–683 (1963).
Ward, O.C. A new familial cardiac syndrome in children. J. Ir. Med. Assoc. 54, 103–106 (1964).
Zipes, D.P. Proarrhythmic effects of antiarrhythmic drugs. Am. J. Cardiol. 59, 26E–31E (1987).
Keating, M. et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science 252, 704–706 (1991).
Keating, M.T. et al. Consistent linkage of the long-QT syndrome to the Harvey Pas-1 locus on chromosome 11. Am. J. hum. Genet. 49, 1335–1339 (1991).
Yatani, A. et al. ras p21 and GAP inhibit coupling of muscrinic receptos to atria) potassium channels. Cell 61, 769–776 (1990).
Davidenko, J.M., Cohen, L.,, Goodrow, R. & Antzelevitch, C. Quinidine-induced action potential prolongation, early afterdepolarizations, and triggered activity in canine Purkinje fibers. Circulation 79, 674–686 (1989).
Philipson, L.H., Eddy, R.L., Shows, T.B. & Bell, G.I. Assignment of human potassium channel gene KCNA4 (Kv1. 4, PCN2) to chromosome 11 q13.4–>q14.1. Genomics 15, 463–464 (1993).
Ried, T. et al. Localization of a highly conserved human potassium channel gene (NGK2-KV4; KCNC1) to chromosome 11 p15. Genomics 15, 405–411 (1993).
Petronis, A., Van Tol, H.H.M., Lichter, J.B., Livak, K.J. & Kennedy, J.L. The D4 dopamine receptor gene maps on 11 p proximal to HRAS . Genomics 18, 161–163 (1993).
Benhorin, J. et al. Evidence of genetic heterogeneity in the long QT syndrome. Science 260, 1960–1962 (1993).
Keating, M. Evidence of genetic heterogeneity in the long QT syndrome. Science 260, 1960–1962 (1993).
Curran, M. et al. Locus Heterogeneity of autosomal dominant long QT syndrome. J. clin. Invest. 92, 799–803 (1993).
Towbin, J.A. et al. Evidence of genetic heterogeneity in Romano-Ward long-QT syndrome (LQTs): Analysis of 23 families. Circulation (in the press).
Keating, M. Linkage analysis and the long QT syndrome: Using genetics to study cardiovascular disease. Circulation 85, 1973–1986 (1992).
Keating, M. Genetics of the long QT syndromes. J. cardiovascular Electrophysiology. 5, 146–153 (1994).
Lehmann, M. T wave humps as an eletrocardiographic marker of the long QT syndrome. J. Am. coll. Cardiol. (in the press).
Weber, J.L. & May, P.E. Abundant class of human DMA polymorphisms which can be typed using polymerase chain reaction. Am J. hum. Genet. 44, 388–396 (1989).
Kramer, P. et al. A comprehensive genetic linkage map of the Human Genome/NIH/CEPH collaborative Mapping Group. Science 258, 67–86 (1992).
Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).
Gyapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).
Green, E.D. et al. Integration of physical, genetic and cytogenetic maps of human chromosome 7: isolation and analysis of yeast artificial chromosome clones for 117 mapped genetic markers. Hum. molec. Genet. 3, 489–501 (1994).
Geoge, A.L. Jr., Crackower, M.A., Abdalla, J.A., Hudson, A.J. & Ebers, G.C. Molecular basis of Thomson's disease (autosomal dominant myotonia congenita). Nature Genet. 3, 305–309 (1993).
Koch, M.C. et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257, 797–800 (1992).
Bonner, T.I., Modi, W.S., Seuanez, H.N. & O'Brien, S. Chromosomal mapping of five human genes encoding muscarinic acetylcholine receptors. Cytogenet. cell Genet. 58, 1850–1867 (1991).
Bonner, T.I., Buckley, N.J., Young, A.C. & Brann, M.R. Identification of a family of muscarinic acetylcholine recepor genes. Science 237, 527–532 (1987).
Goyal, R.K. Muscarinic receptors subtypes: Physiology and clinical implications. New Engl. J. Med. 321, 1022–1029 (1989).
Tsukurov, O. et al. A complex bilateral polysyndactyly disease locus maps to chromosome 7q36. Nature Genet. 6, 282–286 (1994).
Heutink, P. et al. The gene for triphalangeal thumb maps to the subtelomeric region of chromosome 7q. Nature Genet. 6, 287–292 (1994).
Marks, M.L., Whisler, S.L., Clericuzio, C. & Keating, M. A new form of long QT syndrome associated with syndactyly. J. Am. coll. Cardiol. (in the press).
Garcia, D.K. et al. CA repeat polymorphisms for human chromosme 3. Cytogenet. cell Genet. 58, 1877 (1993).
Chin, H., Kozak, C.A., Kim, H., Mock, B. & McBride, O.W. A brain L-type calcium channel α1 subunit gene (CCHL1A2) maps to mouse chromosome 14 and human chromosome 3. Genomics 11, 914–919 (1991).
Seino, S., Yamada, Y., Espinosa III, R., LeBeau, M.M. & Bell, G.I. Assignments of the gene encoding the a1 subunit of the neuroendocrine/brain-type calcium channel (CACNL1A2) to human chromosome 3, band p14.3. Genomics 13, 1375–1377 (1992).
Seino, S. et al. Cloning of the α1 subunit of a voltage-dependent calcium channel expressed in pancreatic β cells. Proc. natn. Acad. Sci. U.S.A. 89, 584–588 (1992).
Williams, M.E. et al. Structure and functional expression of α1, α2 and β subunit of a novel human neuronal calcium channel subtype. Neuron 8, 71–84 (1992).
January, C.T., Riddle, J.M. & Salata, J.J. A model for early afterdepolarization: induction with the Ca2+ channel agonist Bay K8644. Circ. Res. 62, 563–571 (1988).
January, C.T. & Riddle, J.M. Early afterdepolarizations: mechanism of induction and block, A role for L-type Ca2+ current. Circ. Res. 64, 977–990 (1989).
Vincent, G.M., Timothy, K.W., Leppert, M. & Keating, M. The spectrum of symptoms and QT intervals in carriers of the gene for the Long-QT syndrome. New Engl. J. Med. 327, 846–852 (1992).
Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am. J. hum. Genet. 37, 482–498 (1985).
Conneally, P.M. et al. Report of the committee on methods of linkage analysis and reporting. Cytogenet. cell Genet. 40, 356–359 (1985).
Ott, J. Linkage analysis and family classification under heterogeneity. Annals hum. Genet. 47, 311–320 (1983).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jiang, C., Atkinson, D., Towbin, J. et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet 8, 141–147 (1994). https://doi.org/10.1038/ng1094-141
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/ng1094-141