Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recombination rate and reproductive success in humans

Abstract

Intergenerational mixing of DNA through meiotic recombinations of homologous chromosomes during gametogenesis is a major event that generates diversity in the eukaryotic genome. We examined genome-wide microsatellite data for 23,066 individuals, providing information on recombination events of 14,140 maternal and paternal meioses each, and found a positive correlation between maternal recombination counts of an offspring and maternal age. We postulated that the recombination rate of eggs does not increase with maternal age, but that the apparent increase is the consequence of selection. Specifically, a high recombination count increased the chance of a gamete becoming a live birth, and this effect became more pronounced with advancing maternal age. Further support for this hypothesis came from our observation that mothers with high oocyte recombination rate tend to have more children. Hence, not only do recombinations have a role in evolution by yielding diverse combinations of gene variants for natural selection, but they are also under selection themselves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombination rate and maternal age.

Similar content being viewed by others

References

  1. Kong, A. et al. A high-resolution recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

    Article  CAS  Google Scholar 

  2. Broman, K.W., Murray, J.C., Sheffield, V.C., White, R.L. & Weber, J.L. Comprehensive human genetic map: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

    Article  CAS  Google Scholar 

  3. Henderson, S.A. & Edwards, R.G. Chiasma frequency and maternal age in mammals. Nature 218, 22–28 (1968).

    Article  CAS  Google Scholar 

  4. Speed, R.M. & Chandley, A.C. Meiosis in the foetal mouse ovary. II. Oocyte development and age-related aneuploidy. Does a production line exist? Chromosoma 88, 184–189 (1983).

    Article  CAS  Google Scholar 

  5. Polani, P.E. & Jagiello, G.M. Chiasmata, meiotic univalents and age in relationship to aneuploid imbalance in mice. Cytogenet. Cell. Genet. 16, 505–529 (1976).

    Article  CAS  Google Scholar 

  6. Polani, P.E. & Crolla, J.A. A test of the production line hypothesis of mammalian oogenesis. Hum. Genet. 88, 64–70 (1991).

    Article  CAS  Google Scholar 

  7. Tanzi, R.E. et al. A genetic linkage map of human chromosome 21: analysis of recombination as a function of sex and age. Am. J. Hum. Genet. 50, 551–558 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Haines, J.L. et al. A genetic linkage map of chromosome 21: a look at meiotic phenomena. Prog. Clin. Biol. Res. 384, 51–61 (1993).

    CAS  PubMed  Google Scholar 

  9. Elston, R.C., Lange, K. & Namboodiri, K.K. Age trends in human chiasma frequencies and recombination fractions. II method for analyzing recombination fractions and applications to the ABO:nail-patella Linkage. Am. J. Hum. Genet. 28, 69–76 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Renwick, J.H. & Schulze, J. Male and female recombination fractions, for the nailpatella:ABO linkage in man. Ann. Hum. Genet. 28, 379–392 (1965).

    Article  Google Scholar 

  11. Weitkamp, L.R. et al. The relation of parental sex and age to recombination in the HLA system. Hum. Hered. 23, 197–205 (1973).

    Article  CAS  Google Scholar 

  12. Gulcher, J.R., Kristjansson, K., Gudbjartsson, H. & Stefansson, K. Protection of privacy by third-party encryption in genetic research in Iceland. Eur. J. Hum. Genet. 8, 739–742 (2000).

    Article  CAS  Google Scholar 

  13. Little, R.J.A. & Rubin, D.B. Statistical Analysis with Missing Data (John Wiley & Sons, New York, 1987).

    Google Scholar 

  14. Hassold, T.J., Sherman, S. & Hunt, P. Counting cross-overs: characterizing meiotic recombination in mammals. Hum. Mol. Genet. 9, 2409–2419 (2000).

    Article  CAS  Google Scholar 

  15. Robinson, W. et al. Maternal meiosis I nondisjunction of chromosome 15: dependence of the maternal age effect on the level of recombination. Hum. Mol. Genet. 7, 1011–1109 (1998).

    Article  CAS  Google Scholar 

  16. Hodges, C.A. et al. Experimental evidence that changes in oocyte growth influence meiotic chromosome segregation. Hum. Reproduction. 17, 1171–1180 (2002).

    Article  CAS  Google Scholar 

  17. Hunt, P.A. & Hassold, T.J. Sex matters in meiosis. Science 296, 2181–2183 (2002).

    Article  CAS  Google Scholar 

  18. Lamb, N.E. et al. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjuction of chromosome 21. Hum. Mol. Genet. 6, 1391–1399 (1997).

    Article  CAS  Google Scholar 

  19. Lynn, A. et al. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science 296, 2222–2225 (2002).

    Article  CAS  Google Scholar 

  20. Johnson, J., Canning, J., Kaneko, T., Pru, J.K. & Tilly, T.L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150 (2004).

    Article  CAS  Google Scholar 

  21. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Massachusetts, 1998).

    Google Scholar 

  22. Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39, 1–38 (1977).

    Google Scholar 

  23. Gudbjartsson, D.F., Jonasson, K., Frigge, M.L. & Kong, A. Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 25, 12–14 (2000).

    Article  CAS  Google Scholar 

  24. McCulloch, C.E. Maximum likelihood algorithms for generalized linear mixed models. J. Am. Stat. Assoc. 92, 162–170 (1997).

    Article  Google Scholar 

  25. Broman, K.W. & Weber, J.L. Characterization of human crossover interference. Am. J. Hum. Genet. 66, 1911–1926 (2000).

    Article  CAS  Google Scholar 

  26. Irwin, M., Cox, N.J. & Kong, A. Sequential imputation for multilocus linkage analysis. Proc. Natl. Acad. Sci. USA 91, 11684–11688 (1994).

    Article  CAS  Google Scholar 

  27. Quintana, F.A., Liu, J.S. & del Pino, G.E. Monte carlo EM with importance reweighting and its applications in random effects model. Comput. Stat. Data Anal. 29, 429–444 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Augustine Kong or Kari Stefansson.

Ethics declarations

Competing interests

A.K., D.F.G., G.T., G.J., S.S., B.R., J.J., T.T., M.L.F., J.R.G. and K.S. have stocks and equity interests in deCODE Genetics.

Supplementary information

Supplementary Fig. 1

Boxplots of the distribution of maternal recombinations for individual offspring within the grouping of mother's birth age. (PDF 1314 kb)

Supplementary Fig. 2

Paternal recombinations and father's age at birth (PDF 808 kb)

Supplementary Table 1

A description of the 6 cM telomeric regions used in Table 4. (PDF 1179 kb)

Supplementary Table 2

Distribution of the father's age at birth for all offspring. (PDF 823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, A., Barnard, J., Gudbjartsson, D. et al. Recombination rate and reproductive success in humans. Nat Genet 36, 1203–1206 (2004). https://doi.org/10.1038/ng1445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1445

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing