Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein-glycan interactions in the control of innate and adaptive immune responses

Abstract

The importance of protein glycosylation in the migration of immune cells throughout the body has been extensively appreciated. However, our awareness of the impact of glycosylation on the regulation of innate and adaptive immune responses is relatively new. An increasing number of studies reveal the relevance of glycosylation to pathogen recognition, to the modulation of the innate immune system and to the control of immune cell homeostasis and inflammation. Similarly important is the effect of glycan-containing 'information' in the development of autoimmune diseases and cancer. In this review, we provide an overview of these new directions and their impact in the field of glycoimmunology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N- and O-linked glycosylation.
Figure 2: Glycan-binding proteins involved in pathogen interaction leading to antigen presentation and signaling in APC.
Figure 3: Lectin-glycan interactions in the control of immune cell homeostasis.
Figure 4: Glycan modifications during tumor development results in selective recognition by lectins and modulation of immune responses.

Similar content being viewed by others

References

  1. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. van Die, I. & Cummings, R.D. Glycans modulate immune responses in helminth infections and allergy. Chem. Immunol. Allergy 90, 91–112 (2006).

    CAS  PubMed  Google Scholar 

  3. Leffler, H., Carlsson, S., Hedlund, M., Qian, Y. & Poirier, F. Introduction to galectins. Glycoconj. J. 19, 433–440 (2004).

    Article  Google Scholar 

  4. Crocker, P.R., Paulson, J.C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Robinson, M.J., Sancho, D., Slack, E.C., LeibundGut-Landmann, S. & Reis e Sousa, C. Myeloid C-type lectins in innate immunity. Nat. Immunol. 7, 1258–1265 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Weis, W.I., Taylor, M.E. & Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Rabinovich, G.A., Toscano, M.A., Jackson, S.S. & Vasta, G.R. Functions of cell surface galectin-glycoprotein lattices. Curr. Opin. Struct. Biol. 17, 513–520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, F.T. & Rabinovich, G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Nieminen, J., Kuno, A., Hirabayashi, J. & Sato, S. Visualization of Galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer. J. Biol. Chem. 282, 1374–1383 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Zelensky, A.N. & Gready, J.E. The C-type lectin-like domain superfamily. FEBS J. 272, 6179–6217 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Figdor, C.G., van Kooyk, Y. & Adema, G.J. C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Appelmelk, B.J. et al. Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170, 1635–1639 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feinberg, H., Castelli, R., Drickamer, K., Seeberger, P.H. & Weis, W.I. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J. Biol. Chem. 282, 4202–4209 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. van Vliet, S.J., Saeland, E. & van Kooyk, Y. Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol. 29, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, G.D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Rogers, N.C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, M.E. & Drickamer, K. Paradigms for glycan-binding receptors in cell adhesion. Curr. Opin. Cell Biol. 19, 572–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. van Kooyk, Y. & Geijtenbeek, T.B. DC-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol. 3, 697–709 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Blixt, O. & Collins, B.E., van den Nieuwenhof, I.M., Crocker, P.R. & Paulson, J.C. Sialoside specificity of the Siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278, 31007–31019 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Powell, L.D., Sgroi, D., Sjoberg, E.R., Stamenkovic, I. & Varki, A. Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J. Biol. Chem. 268, 7019–7027 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Collins, B.E. et al. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl. Acad. Sci. USA 101, 6104–6109 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barton, G.M. & Medzhitov, R. Toll-like receptor signaling pathways. Science 300, 1524–1525 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Bonifaz, L.C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geijtenbeek, T.B., van Vliet, S.J., Engering, A., ' t Hart, B.A. & van Kooyk, Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Meyer, S. et al. DC-SIGN mediates binding of dendritic cells to authentic pseudo-LewisY glycolipids of Schistosoma mansoni cercariae, the first parasite-specific ligand of DC-SIGN. J. Biol. Chem. 280, 37349–37359 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Gringhuis, S.I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26, 605–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Hodges, A. et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat. Immunol. 8, 569–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Underhill, D.M., Rossnagle, E., Lowell, C.A. & Simmons, R.M. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543–2550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Bergman, M., Del Prete, G., van Kooyk, Y. & Appelmelk, B. Helicobacter pylori phase variation, immune modulation and gastric autoimmunity. Nat. Rev. Microbiol. 4, 151–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. van Liempt, E. et al. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol. Immunol. 44, 2605–2615 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Stambach, N.S. & Taylor, M.E. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 13, 401–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Geijtenbeek, T.B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. de Witte, L. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med. 13, 367–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Takada, A. et al. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J. Virol. 78, 2943–2947 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crocker, P.R. Siglecs in innate immunity. Curr. Opin. Pharmacol. 5, 431–437 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Blasius, A.L. & Colonna, M. Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H. Trends Immunol. 27, 255–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Tateno, H. et al. Distinct endocytic mechanism of CD22 (Siglec-2) and Siglec-F reflects roles in cell signaling and innate immunity. Mol. Cell. Biol. 27, 5699–5710 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pelletier, I. et al. Specific recognition of Leishmania major poly-β-galactosyl epitopes by galectin-9: possible implication of galectin-9 in interaction between L. major and host cells. J. Biol. Chem. 278, 22223–22230 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. van den Berg, T.K. et al. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J. Immunol. 173, 1902–1907 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Nieminen, J., St-Pierre, C. & Sato, S. Galectin-3 interacts with naive and primed neutrophils, inducing innate immune responses. J. Leukoc. Biol. 78, 1127–1135 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, H.Y. et al. Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J. Immunol. 177, 4991–4997 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Rabinovich, G.A., Sotomayor, C.E., Riera, C.M., Bianco, I. & Correa, S.G. Evidence of a role for Galectin-1 in acute inflammation. Eur. J. Immunol. 30, 1331–1339 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. La, M. et al. A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. Am. J. Pathol. 163, 1505–1515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stowell, S.R. et al. Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109, 219–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dai, S.Y. et al. Galectin-9 induces maturation of human monocyte-derived dendritic cells. J. Immunol. 175, 2974–2981 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Fulcher, J.A. et al. Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J. Immunol. 177, 216–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. MacKinnon, A.C. et al. Regulation of alternative activation by galectin-3. J. Immunol. 180, 2650–2658 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Correa, S.G. et al. Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology 13, 119–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Partridge, E.A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Vallejo, J.J. et al. DC-SIGN mediates adhesion and rolling of dendritic cells on primary human umbilical vein endothelial cells through Lewis(Y) antigen expressed on ICAM-2. Mol. Immunol. 45, 2359–2369 (2007).

    Article  PubMed  CAS  Google Scholar 

  55. van Gisbergen, K.P., Geijtenbeek, T.B. & van Kooyk, Y. Close encounters of neutrophils and DCs. Trends Immunol. 26, 626–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. van Vliet, S.J., Gringhuis, S.I., Geijtenbeek, T.B. & van Kooyk, Y. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat. Immunol. 7, 1200–1208 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Stillman, B.N. et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol. 176, 778–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Paclik, D. et al. Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J. Mol. Med. published online, doi:10.1007/s00109-007-0290-2 (7 December 2007).

  59. Fukumori, T. et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 63, 8302–8311 (2003).

    CAS  PubMed  Google Scholar 

  60. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Amano, M., Galvan, M., He, J. & Baum, L.G. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate Galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J. Biol. Chem. 278, 7469–7475 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Stowell, S.R. et al. Galectins-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rossi, B., Espeli, M., Schiff, C. & Gauthier, L. Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation. J. Immunol. 177, 796–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Collins, B.E., Smith, B.A., Bengtson, P. & Paulson, J.C. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat. Immunol. 7, 199–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Han, S., Collins, B.E., Bengtson, P. & Paulson, J.C. Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 1, 93–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Grewal, P.K. et al. ST6Gal-I restrains CD22-dependent antigen receptor endocytosis and Shp-1 recruitment in normal and pathogenic immune signaling. Mol. Cell. Biol. 26, 4970–4981 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Doody, G.M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Hoffmann, A. et al. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat. Immunol. 8, 695–704 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Paulson, J.C., Blixt, O. & Collins, B.E. Sweet spots in functional glycomics. Nat. Chem. Biol. 2, 238–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Buzás, E.I. et al. Carbohydrate recognition systems in autoimmunity. Autoimmunity 39, 691–704 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. Toscano, M.A. et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J. Immunol. 176, 6323–6332 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Perone, M.J. et al. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J. Immunol. 177, 5278–5289 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Toscano, M.A. et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8, 825–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Anderson, A.C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318, 1141–1143 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Hokama, A. et al. Induced reactivity of intestinal CD4+ T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 20, 681–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. van der Leij, J. et al. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol. Immunol. 44, 506–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Blois, S.M. et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat. Med. 13, 1450–1457 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Juszczynski, P. et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl. Acad. Sci. USA 104, 13134–13139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garin, M.I. et al. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058–2065 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Kubach, J. et al. Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 110, 1550–1558 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J.W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Chung, C.D., Patel, V.P., Moran, M., Lewis, L.A. & Miceli, M.C. Galectin-1 induces partial TCR ζ-chain phosphorylation and antagonizes processive TCR signal transduction. J. Immunol. 165, 3722–3729 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kel, J. et al. Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis. Am. J. Pathol. 170, 272–280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Luca, M.E. et al. Mannosylated PLP(139–151) induces peptide-specific tolerance to experimental autoimmune encephalomyelitis. J. Neuroimmunol. 160, 178–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. York, M.R. et al. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum. 56, 1010–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. USA 99, 10231–10233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dube, D.H. & Bertozzi, C.R. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Aarnoudse, C.A., Garcia-Vallejo, J.J., Saeland, E. & van Kooyk, Y. Recognition of tumor glycans by antigen presenting cells. Curr. Opin. Immunol. 18, 105–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Saeland, E. et al. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol. Immunother. 56, 1225–1236 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Kawamura, Y.I. et al. Introduction of Sda carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res. 65, 6220–6227 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Miyazaki, K. et al. Loss of disialyl Lewisa, the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-1 (Siglec-7) associated with increased sialyl Lewisa expression on human colon cancers. Cancer Res. 64, 4498–4505 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Tacken, P.J., de Vries, I.J.M., Torensma, R. & Figdor, C.G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7, 790–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Idoyaga, J. et al. Langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J. Immunol. 180, 3647–3650 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Rubinstein, N. et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: a potential mechanism of tumor-immune privilege. Cancer Cell 5, 241–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Valenzuela, H.F. et al. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by Galectin-1. Cancer Res. 67, 6155–6162 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Daniels, M.A., Hogquist, K.A. & Jameson, S.C. Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat. Immunol. 3, 903–910 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Comelli, E.M. et al. Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. J. Immunol. 177, 2431–2440 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Morgan, R. et al. N-Acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Bax, M. et al. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by Siglecs and galectins. J. Immunol. 179, 8216–8224 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Lau, K.S. et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Grigorian, A. et al. Control of T cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J. Biol. Chem. 282, 20027–20035 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Togayachi, A. et al. Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc. Natl. Acad. Sci. USA 104, 15829–15834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Green, R.S. et al. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27, 308–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Van Dyken, S.J., Green, R.S. & Marth, J.D. Structural and mechanistic features of protein O glycosylation linked to CD8+ T-cell apoptosis. Mol. Cell. Biol. 27, 1096–1111 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Kaneko, Y., Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Arnold, J.N. et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Ju, T. & Cummings, R.D. Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437, 1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. An, G. et al. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J. Exp. Med. 204, 1417–1429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Feizi, T. & Chai, W. Oligosaccharide microarrays to decipher the glycocode. Nat. Rev. Mol. Cell Biol. 5, 582–588 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose papers could not be cited owing to space limitations. We thank all members of the Y.v.K. and G.A.R. laboratories for help and discussion, especially J.J. Garcia-Vallejo, S. van Vliet, M.A. Toscano, J.M. Ilarregui and G. Bianco; and H.F. Rosenberg, I. van Die and T.B.H. Geijtenbeek for critical reading of the manuscript. Supported by grants from Dutch Scientific Organization (NWO/ZONMW), Multiple Sclerosis Research Foundation the Netherlands, Association of International Cancer Research, VU Medical Centre Institute of Cancer and Immunology (VICI) and Bridging Grant Consortium for Functional Glycomics (Y.v.K.) and by The Cancer Research Institute “Elaine R. Shepard” Award, Fundación Sales, Agencia Nacional de Promoción Científica y Tecnológica, University of Buenos Aires and Consejo Nacional de Investigaciones Científicas y Tecnológicas (G.A.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yvette van Kooyk or Gabriel A Rabinovich.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kooyk, Y., Rabinovich, G. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9, 593–601 (2008). https://doi.org/10.1038/ni.f.203

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.f.203

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing