Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune cell migration in inflammation: present and future therapeutic targets

Abstract

The burgeoning field of leukocyte trafficking has created new and exciting opportunities in the clinic. Trafficking signals are being defined that finely control the movement of distinct subsets of immune cells into and out of specific tissues. Because the accumulation of leukocytes in tissues contributes to a wide variety of diseases, these 'molecular codes' have provided new targets for inhibiting tissue-specific inflammation, which have been confirmed in the clinic. However, immune cell migration is also critically important for the delivery of protective immune responses to tissues. Thus, the challenge for the future will be to identify the trafficking molecules that will most specifically inhibit the key subsets of cells that drive disease processes without affecting the migration and function of leukocytes required for protective immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common trafficking molecules in the multistep adhesion cascade.
Figure 2: Key migration steps of immune cells at sites of inflammation.
Figure 3: Specific 'combination codes' used by leukocytes in inflammatory diseases.

Similar content being viewed by others

References

  1. Luster, A.D. Chemokines–chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445 (1998).

    CAS  PubMed  Google Scholar 

  2. Ulbrich, H., Eriksson, E.E. & Lindbom, L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol. Sci. 24, 640–647 (2003).

    CAS  PubMed  Google Scholar 

  3. Yonekawa, K. & Harlan, J.M. Targeting leukocyte integrins in human diseases. J. Leukoc. Biol. 77, 129–140 (2005).

    CAS  PubMed  Google Scholar 

  4. Cavanagh, L.L. & Von Andrian, U.H. Travellers in many guises: the origins and destinations of dendritic cells. Immunol. Cell Biol. 80, 448–462 (2002).

    PubMed  Google Scholar 

  5. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    CAS  PubMed  Google Scholar 

  8. Kunkel, E.J. & Butcher, E.C. Plasma-cell homing. Nat. Rev. Immunol. 3, 822–829 (2003).

    CAS  PubMed  Google Scholar 

  9. Xie, H., Lim, Y.C., Luscinskas, F.W. & Lichtman, A.H. Acquisition of selectin binding and peripheral homing properties by CD4+ and CD8+ T cells. J. Exp. Med. 189, 1765–1776 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    CAS  PubMed  Google Scholar 

  12. Mora, J.R. et al. Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J. Exp. Med. 201, 303–316 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Calzascia, T. et al. Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22, 175–184 (2005).

    CAS  PubMed  Google Scholar 

  14. Sallusto, F., Lenig, D., Mackay, C.R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature 385, 81–83 (1997).

    CAS  PubMed  Google Scholar 

  16. Campbell, J.J. et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884 (2001).

    CAS  PubMed  Google Scholar 

  17. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    CAS  PubMed  Google Scholar 

  18. McEver, R.P. Selectins: lectins that initiate cell adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586 (2002).

    CAS  PubMed  Google Scholar 

  19. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    CAS  PubMed  Google Scholar 

  20. Sperandio, M. et al. P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J. Exp. Med. 197, 1355–1363 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hafezi-Moghadam, A., Thomas, K.L., Prorock, A.J., Huo, Y. & Ley, K. L-selectin shedding regulates leukocyte recruitment. J. Exp. Med. 193, 863–872 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carman, C.V. & Springer, T.A. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547–556 (2003).

    CAS  PubMed  Google Scholar 

  23. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    CAS  PubMed  Google Scholar 

  24. Baltus, T., Weber, K.S., Johnson, Z., Proudfoot, A.E. & Weber, C. Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood 102, 1985–1988 (2003).

    CAS  PubMed  Google Scholar 

  25. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76, 301–314 (1994).

    CAS  PubMed  Google Scholar 

  26. Butcher, E.C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    CAS  PubMed  Google Scholar 

  27. Vajkoczy, P., Laschinger, M. & Engelhardt, B. α4-integrin mediates G-protein independent capture of encephalitogenic T cell blasts on endothelial VCAM-1 in spinal cord white matter microvessels. J. Clin. Invest. 108, 557–565 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ley, K. Integration of inflammatory signals by rolling neutrophils. Immunol. Rev. 186, 8–18 (2002).

    CAS  PubMed  Google Scholar 

  29. Berlin, C. et al. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80, 413–422 (1995).

    CAS  PubMed  Google Scholar 

  30. Stolen, C.M. et al. Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 22, 105–115 (2005).

    CAS  PubMed  Google Scholar 

  31. Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005).

    CAS  PubMed  Google Scholar 

  32. Liu, S., Calderwood, D.A. & Ginsberg, M.H. Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 113, 3563–3571 (2000).

    CAS  PubMed  Google Scholar 

  33. Nandi, A., Estess, P. & Siegelman, M. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity 20, 455–465 (2004).

    CAS  PubMed  Google Scholar 

  34. Shamri, R. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat. Immunol. 6, 497–506 (2005).

    CAS  PubMed  Google Scholar 

  35. Shimaoka, M. & Springer, T.A. Therapeutic antagonists and the conformational regulation of the β2 integrins. Curr. Top. Med. Chem. 4, 1485–1495 (2004).

    CAS  PubMed  Google Scholar 

  36. Kim, M., Carman, C.V., Yang, W., Salas, A. & Springer, T.A. The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2 . J. Cell Biol. 167, 1241–1253 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber, C. & Springer, T.A. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to αIibβ3 and stimulated by platelet-activating factor. J. Clin. Invest. 100, 2085–2093 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. von Hundelshausen, P. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103, 1772–1777 (2001).

    CAS  PubMed  Google Scholar 

  39. Ley, K. Arrest chemokines. Microcirculation 10, 289–295 (2003).

    CAS  PubMed  Google Scholar 

  40. Laudanna, C., Kim, J.Y., Constantin, G. & Butcher, E. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37–46 (2002).

    CAS  PubMed  Google Scholar 

  41. Kunkel, E.J., Dunne, J.L. & Ley, K. Leukocyte arrest during cytokine-dependent inflammation in vivo. J. Immunol. 164, 3301–3308 (2000).

    CAS  PubMed  Google Scholar 

  42. Atarashi, K., Hirata, T., Matsumoto, M., Kanemitsu, N. & Miyasaka, M. Rolling of Th1 cells via P-selectin glycoprotein ligand-1 stimulates LFA-1-mediated cell binding to ICAM-1. J. Immunol. 174, 1424–1432 (2005).

    CAS  PubMed  Google Scholar 

  43. Smith, M.L., Olson, T.S. & Ley, K. CXCR2- and E-selectin-induced neutrophil arrest during inflammation in vivo. J. Exp. Med. 200, 935–939 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    CAS  PubMed  Google Scholar 

  45. Vestweber, D. Regulation of endothelial cell contacts during leukocyte extravasation. Curr. Opin. Cell Biol. 14, 587–593 (2002).

    CAS  PubMed  Google Scholar 

  46. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dustin, M.L., Bivona, T.G. & Philips, M.R. Membranes as messengers in T cell adhesion signaling. Nat. Immunol. 5, 363–372 (2004).

    CAS  PubMed  Google Scholar 

  48. Vicente-Manzanares, M. & Sanchez-Madrid, F. Role of the cytoskeleton during leukocyte responses. Nat. Rev. Immunol. 4, 110–122 (2004).

    CAS  PubMed  Google Scholar 

  49. Wymann, M.P. & Marone, R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr. Opin. Cell Biol. 17, 141–149 (2005).

    CAS  PubMed  Google Scholar 

  50. Feng, D., Nagy, J.A., Pyne, K., Dvorak, H.F. & Dvorak, A.M. Neutrophils emigrate from venules by a transendothelial cell pathway in response to fMLP. J. Exp. Med. 187, 903–915 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Barreiro, O. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157, 1233–1245 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Carman, C.V. & Springer, T.A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Johnson-Leger, C., Aurrand-Lions, M. & Imhof, B.A. The parting of the endothelium: miracle, or simply a junctional affair? J. Cell Sci. 113, 921–933 (2000).

    CAS  PubMed  Google Scholar 

  54. Muller, W.A. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24, 327–334 (2003).

    CAS  PubMed  Google Scholar 

  55. Dangerfield, J., Larbi, K.Y., Huang, M.T., Dewar, A. & Nourshargh, S. PECAM-1 (CD31) homophilic interaction up-regulates α6β1 on transmigrated neutrophils in vivo and plays a functional role in the ability of α6 integrins to mediate leukocyte migration through the perivascular basement membrane. J. Exp. Med. 196, 1201–1211 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Reedquist, K.A. et al. The small GTPase, rap1, mediates CD31-induced integrin adhesion. J. Cell Biol. 148, 1151–1158 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dangerfield, J.P., Wang, S. & Nourshargh, S. Blockade of α6 integrin inhibits IL-1β- but not TNF-α-induced neutrophil transmigration in vivo. J. Leukoc. Biol. 77, 159–165 (2005).

    CAS  PubMed  Google Scholar 

  58. Ray, S.J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    CAS  PubMed  Google Scholar 

  59. Timpl, R. Macromolecular organization of basement membranes. Curr. Opin. Cell Biol. 8, 618–624 (1996).

    CAS  PubMed  Google Scholar 

  60. Sixt, M. et al. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J. Cell Biol. 153, 933–946 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Stamenkovic, I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol. 200, 448–464 (2003).

    CAS  PubMed  Google Scholar 

  62. Rose, M.J. & Page, C. Glycosaminoglycans and the regulation of allergic inflammation. Curr. Drug Targets Inflamm. Allergy 3, 221–225 (2004).

    CAS  PubMed  Google Scholar 

  63. Romanic, A.M. & Madri, J.A. The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent. J. Cell Biol. 125, 1165–1178 (1994).

    CAS  PubMed  Google Scholar 

  64. Vorup-Jensen, T. et al. Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin αXβ2 . Proc. Natl. Acad. Sci. USA 102, 1614–1619 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vaday, G.G. et al. Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix. J. Leukoc. Biol. 69, 885–892 (2001).

    CAS  PubMed  Google Scholar 

  66. Wang, L., Fuster, M., Sriramarao, P. & Esko, J.D. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat. Immunol. 6, 902–910 (2005).

    CAS  PubMed  Google Scholar 

  67. Wolf, K., Muller, R., Borgmann, S., Brocker, E.B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003).

    CAS  PubMed  Google Scholar 

  68. Kinashi, T. et al. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood 103, 1033–1036 (2004).

    CAS  PubMed  Google Scholar 

  69. Sekido, N. et al. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 365, 654–657 (1993).

    CAS  PubMed  Google Scholar 

  70. Harada, A. et al. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 56, 559–564 (1994).

    CAS  PubMed  Google Scholar 

  71. Kaneider, N.C., Agarwal, A., Leger, A.J. & Kuliopulos, A. Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat. Med. 11, 661–665 (2005).

    CAS  PubMed  Google Scholar 

  72. Ghosh, S. et al. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348, 24–32 (2003).

    CAS  PubMed  Google Scholar 

  73. Miller, D.H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348, 15–23 (2003).

    CAS  PubMed  Google Scholar 

  74. Feagan, B.G. et al. Treatment of ulcerative colitis with a humanized antibody to the α4β7 integrin. N. Engl. J. Med. 352, 2499–2507 (2005).

    CAS  PubMed  Google Scholar 

  75. Kunkel, E.J. et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J. Exp. Med. 192, 761–768 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Reiss, Y., Proudfoot, A.E., Power, C.A., Campbell, J.J. & Butcher, E.C. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J. Exp. Med. 194, 1541–1547 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cupedo, T. & Mebius, R.E. Role of chemokines in the development of secondary and tertiary lymphoid tissues. Semin. Immunol. 15, 243–248 (2003).

    CAS  PubMed  Google Scholar 

  78. Hjelmstrom, P. Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leukoc. Biol. 69, 331–339 (2001).

    CAS  PubMed  Google Scholar 

  79. Geissmann, F., Jung, S. & Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    CAS  PubMed  Google Scholar 

  80. Ancuta, P. et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J. Exp. Med. 197, 1701–1707 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    CAS  PubMed  Google Scholar 

  82. Izikson, L., Klein, R.S., Luster, A.D. & Weiner, H.L. Targeting monocyte recruitment in CNS autoimmune disease. Clin. Immunol. 103, 125–131 (2002).

    CAS  PubMed  Google Scholar 

  83. Gong, J.H., Ratkay, L.G., Waterfield, J.D. & Clark-Lewis, I. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J. Exp. Med. 186, 131–137 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Humbles, A.A. et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl. Acad. Sci. USA 99, 1479–1484 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ma, W. et al. CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. J. Clin. Invest. 109, 621–628 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mathew, A., Medoff, B.D., Carafone, A.D. & Luster, A.D. Cutting edge: Th2 cell trafficking into the allergic lung is dependent on chemoattractant receptor signaling. J. Immunol. 169, 651–655 (2002).

    CAS  PubMed  Google Scholar 

  87. Mathew, A. et al. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J. Exp. Med. 193, 1087–1096 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Luster, A.D. & Tager, A.M. T-cell trafficking in asthma: lipid mediators grease the way. Nat. Rev. Immunol. 4, 711–724 (2004).

    CAS  PubMed  Google Scholar 

  89. Tager, A.M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol. 4, 982–990 (2003).

    CAS  PubMed  Google Scholar 

  90. Goodarzi, K., Goodarzi, M., Tager, A.M., Luster, A.D. & von Andrian, U.H. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat. Immunol. 4, 965–973 (2003).

    CAS  PubMed  Google Scholar 

  91. Kwon, J.H., Keates, S., Bassani, L., Mayer, L.F. & Keates, A.C. Colonic epithelial cells are a major site of macrophage inflammatory protein 3α (MIP-3α) production in normal colon and inflammatory bowel disease. Gut 51, 818–826 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cook, D.N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    CAS  PubMed  Google Scholar 

  93. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    CAS  PubMed  Google Scholar 

  94. Bromley, S.K., Thomas, S.Y. & Luster, A.D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6, 895–901 (2005).

    CAS  PubMed  Google Scholar 

  95. Debes, G.F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6, 889–894 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rosen, H. & Goetzl, E.J. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat. Rev. Immunol. 5, 560–570 (2005).

    CAS  PubMed  Google Scholar 

  97. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health (A.D.L. and U.H.v.A.), the Dana Foundation (A.D.L. and U.H.v.A.), the Mary K. Iacocca Faculty Fellowship (U.H.v.A.), the Roche Organ Transplant Research Foundation (A.D.L.) and the Israel Science Foundation and MAIN, the EU6 Program for Migration and Inflammation (R.A.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew D Luster, Ronen Alon or Ulrich H von Andrian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Selectin and selectin ligands (PDF 55 kb)

Supplementary Table 2

Integrinsa and endothelial ligands involved in leukocyte rolling and arrest (PDF 73 kb)

Supplementary Table 3

Chemoatrractant receptors and their chemokine and lipid ligands implicated in adhesion and chemotaxis (PDF 76 kb)

Supplementary Table 4

Key diapedesis and extracellular matrix counter-receptors (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luster, A., Alon, R. & von Andrian, U. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6, 1182–1190 (2005). https://doi.org/10.1038/ni1275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1275

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing