Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions of natural killer cells

Abstract

Natural killer (NK) cells are effector lymphocytes of the innate immune system that control several types of tumors and microbial infections by limiting their spread and subsequent tissue damage. Recent research highlights the fact that NK cells are also regulatory cells engaged in reciprocal interactions with dendritic cells, macrophages, T cells and endothelial cells. NK cells can thus limit or exacerbate immune responses. Although NK cells might appear to be redundant in several conditions of immune challenge in humans, NK cell manipulation seems to hold promise in efforts to improve hematopoietic and solid organ transplantation, promote antitumor immunotherapy and control inflammatory and autoimmune disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NK cell–target cell 'zipper'.
Figure 2: NK cell trafficking.
Figure 3: Regulation of immune responses by NK cells.
Figure 4: NK cell functions.

Similar content being viewed by others

References

  1. Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 47, 187–376 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vivier, E., Nunes, J.A. & Vely, F. Natural killer cell signaling pathways. Science 306, 1517–1519 (2004).

    CAS  PubMed  Google Scholar 

  3. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    CAS  PubMed  Google Scholar 

  4. Sivori, S. et al. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc. Natl. Acad. Sci. USA 101, 10116–10121 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerosa, F. et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J. Immunol. 174, 727–734 (2005).

    CAS  PubMed  Google Scholar 

  6. Hart, O.M., Athie-Morales, V., O'Connor, G.M. & Gardiner, C.M. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-γ production. J. Immunol. 175, 1636–1642 (2005).

    CAS  PubMed  Google Scholar 

  7. Yokoyama, W.M. & Plougastel, B.F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    CAS  PubMed  Google Scholar 

  8. Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 5, 201–214 (2005).

    CAS  PubMed  Google Scholar 

  9. Kärre, K., Ljunggren, H.G., Piontek, G. & Kiessling, R. Selective rejection of H-2–deficient lymphoma variants suggests alternative immune defense strategy. Nature 319, 675–678 (1986).

    PubMed  Google Scholar 

  10. Kumar, V. & McNerney, M.E. A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat. Rev. Immunol. 5, 363–374 (2005).

    CAS  PubMed  Google Scholar 

  11. Gregoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Y. et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology 121, 258–265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jamieson, A.M., Isnard, P., Dorfman, J.R., Coles, M.C. & Raulet, D.H. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J. Immunol. 172, 864–870 (2004).

    CAS  PubMed  Google Scholar 

  14. Walzer, T. et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA 104, 3384–3389 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hayakawa, Y. & Smyth, M.J. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 176, 1517–1524 (2006).

    CAS  PubMed  Google Scholar 

  16. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 3, 523–528 (2002).

    PubMed  Google Scholar 

  17. Cooper, M.A., Fehniger, T.A. & Caligiuri, M.A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    CAS  PubMed  Google Scholar 

  18. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    CAS  PubMed  Google Scholar 

  19. Ferlazzo, G. & Munz, C. NK cell compartments and their activation by dendritic cells. J. Immunol. 172, 1333–1339 (2004).

    CAS  PubMed  Google Scholar 

  20. Freud, A.G. & Caligiuri, M.A. Human natural killer cell development. Immunol. Rev. 214, 56–72 (2006).

    CAS  PubMed  Google Scholar 

  21. Chen, S., Kawashima, H., Lowe, J.B., Lanier, L.L. & Fukuda, M. Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J. Exp. Med. 202, 1679–1689 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol. 8, 1337–1344 (2007).

    CAS  PubMed  Google Scholar 

  23. Kim, C.H. et al. CCR7 ligands, SLC/6Ckine/Exodus2/TCA4 and CKβ-11/MIP-3β/ELC, are chemoattractants for CD56+CD16 NK cells and late stage lymphoid progenitors. Cell. Immunol. 193, 226–235 (1999).

    CAS  PubMed  Google Scholar 

  24. Parolini, S. et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109, 3625–3632 (2007).

    CAS  PubMed  Google Scholar 

  25. Long, E.O. Ready for prime time: NK cell priming by dendritic cells. Immunity 26, 385–387 (2007).

    CAS  PubMed  Google Scholar 

  26. Walzer, T., Dalod, M., Robbins, S.H., Zitvogel, L. & Vivier, E. Natural-killer cells and dendritic cells: “l'union fait la force.” Blood 106, 2252–2258 (2005).

    CAS  PubMed  Google Scholar 

  27. Fehniger, T.A. et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–3057 (2003).

    CAS  PubMed  Google Scholar 

  28. Shanker, A. et al. CD8 T cell help for innate antitumor immunity. J. Immunol. 179, 6651–6662 (2007).

    CAS  PubMed  Google Scholar 

  29. Laouar, Y., Sutterwala, F.S., Gorelik, L. & Flavell, R.A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat. Immunol. 6, 600–607 (2005).

    CAS  PubMed  Google Scholar 

  30. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. J. Exp. Med. 202, 1075–1085 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Smyth, M.J. et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J. Immunol. 176, 1582–1587 (2006).

    CAS  PubMed  Google Scholar 

  32. Fehniger, T.A. et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26, 798–811 (2007).

    CAS  PubMed  Google Scholar 

  33. Bryceson, Y.T., March, M.E., Ljunggren, H.G. & Long, E.O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lucas, M., Schachterle, W., Oberle, K., Aichele, P. & Diefenbach, A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Johansson, M.H., Bieberich, C., Jay, G., Karre, K. & Hoglund, P. Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J. Exp. Med. 186, 353–364 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    CAS  PubMed  Google Scholar 

  37. Yu, J. et al. Hierarchy of the human natural killer cell response is determined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands. J. Immunol. 179, 5977–5989 (2007).

    CAS  PubMed  Google Scholar 

  38. Fernandez, N.C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Raulet, D.H. & Vance, R.E. Self-tolerance of natural killer cells. Nat. Rev. Immunol. 6, 520–531 (2006).

    CAS  PubMed  Google Scholar 

  40. Stewart, C.A. & Vivier, E. Strategies of NK cell recognition and their roles in tumor immunosurveillance. in How the Immune System Recognizes Self and Nonself: Immunoreceptors and Their Signaling (ed. Kitamura, D.) 37–81 (Springer, Tokyo, 2007).

    Google Scholar 

  41. Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cerwenka, A., Baron, J.L. & Lanier, L.L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl. Acad. Sci. USA 98, 11521–11526 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kelly, J.M. et al. Induction of tumor-specific T cell memory by NK cell–mediated tumor rejection. Nat. Immunol. 3, 83–90 (2002).

    CAS  PubMed  Google Scholar 

  44. Smyth, M.J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med. 202, 583–588 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Street, S.E. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199, 879–884 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Orange, J.S. Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol. 6, 399–409 (2006).

    PubMed  Google Scholar 

  47. Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356, 1795–1799 (2000).

    CAS  PubMed  Google Scholar 

  48. Ruggeri, L., Aversa, F., Martelli, M.F. & Velardi, A. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol. Rev. 214, 202–218 (2006).

    CAS  PubMed  Google Scholar 

  49. Bignon, J.D. & Gagne, K. KIR matching in hematopoietic stem cell transplantation. Curr. Opin. Immunol. 17, 553–559 (2005).

    CAS  PubMed  Google Scholar 

  50. Koh, C.Y. et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97, 3132–3137 (2001).

    CAS  PubMed  Google Scholar 

  51. Ljunggren, H.G. & Malmberg, K.J. Prospects for the use of NK cells in immunotherapy of human cancer. Nat. Rev. Immunol. 7, 329–339 (2007).

    CAS  PubMed  Google Scholar 

  52. McKenna, D.H. Jr. et al. Good manufacturing practices production of natural killer cells for immunotherapy: a six-year single-institution experience. Transfusion 47, 520–528 (2007).

    CAS  PubMed  Google Scholar 

  53. Miller, J.S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    CAS  PubMed  Google Scholar 

  54. Lee, S.H., Miyagi, T. & Biron, C.A. Keeping NK cells in highly regulated antiviral warfare. Trends Immunol. 28, 252–259 (2007).

    CAS  PubMed  Google Scholar 

  55. Scalzo, A.A., Corbett, A.J., Rawlinson, W.D., Scott, G.M. & Degli-Esposti, M.A. The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol. Cell Biol. 85, 46–54 (2007).

    CAS  PubMed  Google Scholar 

  56. Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99, 8826–8831 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B. & Lanier, L.L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    CAS  PubMed  Google Scholar 

  58. Desrosiers, M.-P. et al. Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell–mediated innate resistance to cytomegalovirus infection. Nat. Genet. 37, 593–599 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dalod, M. et al. Interferon α/β and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195, 517–528 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P. & Salazar-Mather, T.P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    CAS  PubMed  Google Scholar 

  61. Vidal, S.M. & Lanier, L.L. NK cell recognition of mouse cytomegalovirus-infected cells. Curr. Top. Microbiol. Immunol. 298, 183–206 (2006).

    CAS  PubMed  Google Scholar 

  62. Voigt, S. et al. Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1:Ocil/Clr-b missing-self axis. Immunity 26, 617–627 (2007).

    CAS  PubMed  Google Scholar 

  63. Fischer, A. Human primary immunodeficiency diseases. Immunity 27, 835–845 (2007).

    CAS  PubMed  Google Scholar 

  64. Raulet, D.H. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat. Immunol. 5, 996–1002 (2004).

    CAS  PubMed  Google Scholar 

  65. Paya, C.V., Patick, A.K., Leibson, P.J. & Rodriguez, M. Role of natural killer cells as immune effectors in encephalitis and demyelination induced by Theiler's virus. J. Immunol. 143, 95–102 (1989).

    CAS  PubMed  Google Scholar 

  66. Fairweather, D., Kaya, Z., Shellam, G.R., Lawson, C.M. & Rose, N.R. From infection to autoimmunity. J. Autoimmun. 16, 175–186 (2001).

    CAS  PubMed  Google Scholar 

  67. Robbins, S.H. et al. Natural killer cells promote early CD8 T cell responses against cytomegalovirus. PLoS Pathog. 3, e123 (2007).

    PubMed  PubMed Central  Google Scholar 

  68. van Dommelen, S.L.H. et al. Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity 25, 835–848 (2006).

    CAS  PubMed  Google Scholar 

  69. Janka, G.E. Hemophagocytic syndromes. Blood Rev. 21, 245–253 (2007).

    CAS  PubMed  Google Scholar 

  70. Jordan, M.B., Hildeman, D., Kappler, J. & Marrack, P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 104, 735–743 (2004).

    CAS  PubMed  Google Scholar 

  71. Crozat, K. et al. Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. J. Exp. Med. 204, 853–863 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nedvetzki, S. et al. Reciprocal regulation of natural killer cells and macrophages associated with distinct immune synapses. Blood 109, 3776–3785 (2007).

    CAS  PubMed  Google Scholar 

  73. Moretta, L. et al. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol. Rev. 214, 219–228 (2006).

    CAS  PubMed  Google Scholar 

  74. Degli-Esposti, M.A. & Smyth, M.J. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat. Rev. Immunol. 5, 112–124 (2005).

    CAS  PubMed  Google Scholar 

  75. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hayakawa, Y. et al. NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J. Immunol. 172, 123–129 (2004).

    CAS  PubMed  Google Scholar 

  77. Yu, G., Xu, X., Vu, M.D., Kilpatrick, E.D. & Li, X.C. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J. Exp. Med. 203, 1851–1858 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, H.J. et al. Inflammatory arthritis can be reined in by CpG-induced DC NK cell cross talk. J. Exp. Med. 204, 1911–1922 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    CAS  PubMed  Google Scholar 

  80. Morandi, B., Bougras, G., Muller, W.A., Ferlazzo, G. & Munz, C. NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-γ secretion. Eur. J. Immunol. 36, 2394–2400 (2006).

    CAS  PubMed  Google Scholar 

  81. Lu, L. et al. Regulation of activated CD4+ T cells by NK cells via the Qa-1–NKG2A inhibitory pathway. Immunity 26, 593–604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Takeda, K. & Dennert, G. The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J. Exp. Med. 177, 155–164 (1993).

    CAS  PubMed  Google Scholar 

  83. Johansson, S., Berg, L., Hall, H. & Hoglund, P. NK cells: elusive players in autoimmunity. Trends Immunol. 26, 613–618 (2005).

    CAS  PubMed  Google Scholar 

  84. Yoneda, O. et al. Fractalkine-mediated endothelial cell injury by NK cells. J. Immunol. 164, 4055–4062 (2000).

    CAS  PubMed  Google Scholar 

  85. Bolovan-Fritts, C.A. & Spector, S.A. Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood 111, 175–182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rieben, R. & Seebach, J.D. Xenograft rejection: IgG1, complement and NK cells team up to activate and destroy the endothelium. Trends Immunol. 26, 2–5 (2005).

    CAS  PubMed  Google Scholar 

  87. Anne Croy, B., van den Heuvel, M.J., Borzychowski, A.M. & Tayade, C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol. Rev. 214, 161–185 (2006).

    PubMed  Google Scholar 

  88. Hanna, J. et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 12, 1065–1074 (2006).

    CAS  PubMed  Google Scholar 

  89. Moffett, A. & Hiby, S.E. How does the maternal immune system contribute to the development of pre-eclampsia? Placenta 28 (suppl. A), S51–S56 (2007).

    PubMed  Google Scholar 

  90. Dunn, C. et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med. 204, 667–680 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, Y. et al. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology 46, 706–715 (2007).

    CAS  PubMed  Google Scholar 

  92. Kerr, A.R. et al. Identification of a detrimental role for NK cells in pneumococcal pneumonia and sepsis in immunocompromised hosts. Microbes Infect. 7, 845–852 (2005).

    CAS  PubMed  Google Scholar 

  93. Badgwell, B. et al. Natural killer cells contribute to the lethality of a murine model of Escherichia coli infection. Surgery 132, 205–212 (2002).

    PubMed  Google Scholar 

  94. Flodstrom, M. et al. Target cell defense prevents the development of diabetes after viral infection. Nat. Immunol. 3, 373–382 (2002).

    CAS  PubMed  Google Scholar 

  95. Poirot, L., Benoist, C. & Mathis, D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc. Natl. Acad. Sci. USA 101, 8102–8107 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. de Matos, C.T. et al. Activating and inhibitory receptors on synovial fluid natural killer cells of arthritis patients: role of CD94/NKG2A in control of cytokine secretion. Immunology 122, 291–301 (2007).

    PubMed  PubMed Central  Google Scholar 

  97. Katchar, K., Soderstrom, K., Wahlstrom, J., Eklund, A. & Grunewald, J. Characterisation of natural killer cells and CD56+ T-cells in sarcoidosis patients. Eur. Respir. J. 26, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  98. O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. T cell– and B cell–independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    CAS  PubMed  Google Scholar 

  99. Lambiase, A. et al. Natural killer cells in vernal keratoconjunctivitis. Mol. Vis. 13, 1562–1567 (2007).

    CAS  PubMed  Google Scholar 

  100. Buentke, E. et al. Natural killer and dendritic cell contact in lesional atopic dermatitis skin – Malassezia-influenced cell interaction. J. Invest. Dermatol. 119, 850–857 (2002).

    CAS  PubMed  Google Scholar 

  101. Ottaviani, C. et al. CD56brightCD16 NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur. J. Immunol. 36, 118–128 (2006).

    CAS  PubMed  Google Scholar 

  102. Tagliabue, A., Befus, A.D., Clark, D.A. & Bienenstock, J. Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria. J. Exp. Med. 155, 1785–1796 (1982).

    CAS  PubMed  Google Scholar 

  103. Korbel, D.S., Finney, O.C. & Riley, E.M. Natural killer cells and innate immunity to protozoan pathogens. Int. J. Parasitol. 34, 1517–1528 (2004).

    CAS  PubMed  Google Scholar 

  104. Roetynck, S. et al. Natural killer cells and malaria. Immunol. Rev. 214, 251–263 (2006).

    CAS  PubMed  Google Scholar 

  105. Mavilio, D. et al. Characterization of CD56/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc. Natl. Acad. Sci. USA 102, 2886–2891 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Alter, G. et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J. Exp. Med. 204, 3027–3036 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Carr, W.H. et al. Cutting edge: KIR3DS1, a gene implicated in resistance to progression to AIDS, encodes a DAP12-associated receptor expressed on NK cells that triggers NK cell activation. J. Immunol. 178, 647–651 (2007).

    CAS  PubMed  Google Scholar 

  108. Vieillard, V., Strominger, J.L. & Debre, P. NK cytotoxicity against CD4+ T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand. Proc. Natl. Acad. Sci. USA 102, 10981–10986 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim, S., Iizuka, K., Aguila, H.L., Weissman, I.L. & Yokoyama, W.M. In vivo natural killer cell activities revealed by natural killer cell- deficient mice. Proc. Natl. Acad. Sci. USA 97, 2731–2736 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the past and present members of the E.V. lab, and in particular S. Guia and C. Cognet. We also thank K. Hoebe for communication of unpublished results and C. Beziers-Lafosse for help with the illustrations. Because of space limitations, certain studies could not be quoted, and we apologize to colleagues for such omissions. Supported by INSERM, Centre National de la Recherche Scientifique, the European Union ('ALLOSTEM'), Ligue Nationale contre le Cancer ('Equipe labellisée La Ligue'), the Agence Nationale de la Recherche ('Réseau Innovation Biotechnologies'; 'Microbiologie Immunologie – Maladies Emergentes'; 'Maladies Rares'; 'Plates-Formes Technologiques du Vivant'), Institut National du Cancer, Ministère de l'Enseignement Supérieur et de la Recherche and Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Vivier.

Ethics declarations

Competing interests

E.V. is a founder, consultant and shareholder of Innate-Pharma.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivier, E., Tomasello, E., Baratin, M. et al. Functions of natural killer cells. Nat Immunol 9, 503–510 (2008). https://doi.org/10.1038/ni1582

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing