Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy modulation as a potential therapeutic target for diverse diseases

Key Points

  • Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles.

  • It begins when double-membraned autophagosomes engulf portions of cytoplasm, which is followed by the fusion of these vesicles with lysosomes and degradation of the autophagic contents.

  • In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders.

  • This Review provides an overview of the mechanisms involved in autophagy, and briefly reviews the various signalling pathways that control the process, as a backdrop for considering potential targets that may be druggable.

  • We consider the roles of autophagy in different diseases, focusing on metabolic diseases, neurodegenerative diseases, cancers, infectious diseases and immunity.

  • Autophagy may be inhibited or activated during different diseases, and the possible consequences of these effects are explored.

  • We discuss disease states in which autophagy upregulation or inhibition may be beneficial.

  • Candidate therapeutic possibilities for autophagy inhibition, autophagy upregulation and modulation of the clearance of selective autophagy substrates are also considered, and we provide an overview of the different pharmacological agents that are currently available as potential drugs and chemical probes.

  • Last, we consider some possible future directions as well as caveats for various therapeutic approaches involving autophagy modulation.

Abstract

Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles. It begins when double-membraned autophagosomes engulf portions of the cytoplasm, which is followed by fusion of these vesicles with lysosomes and degradation of the autophagic contents. In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. This article provides an overview of the mechanisms and regulation of autophagy, the role of this pathway in disease and strategies for therapeutic modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the regulation of macroautophagy and potential drug targets.
Figure 2: Effects of drugs on the different steps of the autophagic pathway.

Similar content being viewed by others

References

  1. Ravikumar, B. et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90, 1383–1435 (2010).

    CAS  PubMed  Google Scholar 

  2. Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nature Cell Biol. 12, 814–822 (2010).

    CAS  PubMed  Google Scholar 

  3. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004). This study illustrates the importance of autophagy in newborn mammals as a process that protects against starvation in the period before breast feeding is established.

    CAS  PubMed  Google Scholar 

  4. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25, 1025–1040 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizushima, N. & Levine, B. Autophagy in mammalian development and differentiation. Nature Cell Biol. 12, 823–830 (2010).

    CAS  PubMed  Google Scholar 

  6. Tsukamoto, S. et al. Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120 (2008).

    CAS  PubMed  Google Scholar 

  7. Al Rawi, S. et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147 (2011).

    CAS  PubMed  Google Scholar 

  8. Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011).

    CAS  PubMed  Google Scholar 

  9. Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    CAS  PubMed  Google Scholar 

  10. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    CAS  PubMed  Google Scholar 

  11. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature Cell Biol. 11, 1433–1437 (2009).

    CAS  PubMed  Google Scholar 

  13. Ylä-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185 (2009). References 11, 12 and 13 provide strong support for a role of the ER in autophagosome biogenesis.

    PubMed  Google Scholar 

  14. Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010). This study suggests that mitochondria contribute membrane to autophagosomes during starvation.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biol. 12, 747–757 (2010). This study provides evidence that the plasma membrane is involved in the formation of autophagosome precursor structures.

    CAS  PubMed  Google Scholar 

  16. Mari, M. et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190, 1005–1022 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohashi, Y. & Munro, S. Membrane delivery to the yeast autophagosome from the Golgi–endosomal system. Mol. Biol. Cell 21, 3998–4008 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nair, U. et al. SNARE proteins are required for macroautophagy. Cell 146, 290–302 (2011). This study shows how SNARE proteins are involved in autophagosome biogenesis in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moreau, K., Ravikumar, B., Renna, M., Puri, C. & Rubinsztein, D. C. Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303–317 (2011). This paper describes how SNAREs regulate mammalian autophagy by aiding in the expansion of the membranes of autophagosome precursors.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Noda, N. N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211–1218 (2008).

    CAS  PubMed  Google Scholar 

  21. Weidberg, H., Shvets, E. & Elazar, Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80, 125–156 (2011).

    CAS  PubMed  Google Scholar 

  22. Kraft, C., Reggiori, F. & Peter, M. Selective types of autophagy in yeast. Biochim. Biophys. Acta 1793, 1404–1412 (2009).

    CAS  PubMed  Google Scholar 

  23. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    CAS  PubMed  Google Scholar 

  24. Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320–2326 (1995).

    CAS  PubMed  Google Scholar 

  25. Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966 (1998).

    CAS  PubMed  Google Scholar 

  26. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).

    CAS  PubMed  Google Scholar 

  27. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005). This study describes BCL-2 proteins as key negative regulators of autophagy that act via interactions with BECN1.

    CAS  PubMed  Google Scholar 

  28. Erlich, S. et al. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 3, 561–568 (2007).

    CAS  PubMed  Google Scholar 

  29. Maiuri, M. C. et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei, Y., Pattingre, S., Bassik, M., Sinha, S. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008). This paper describes how JNK1-mediated phosphorylation of BCL-2 during starvation results in dissociation of the interaction between BCL-2 and BECN1, and mediates autophagy induction.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pattingre, S. et al. Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J. Biol. Chem. 284, 2719–2728 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rabinowitz, J. D. & White, E. Autophagy and metabolism. Science 330, 1344–1348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Codogno, P. & Meijer, A. J. Autophagy: a potential link between obesity and insulin resistance. Cell Metab. 11, 449–451 (2010).

    CAS  PubMed  Google Scholar 

  36. Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329–3339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860–19865 (2009).

    CAS  PubMed  Google Scholar 

  38. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012). This paper describes exercise as a novel physiological inducer of autophagy and demonstrates a role for autophagy in the exercise-induced beneficial effects on metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaushik, S. et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14, 173–183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β (IKKβ)/NF-κB pathway. J. Biol. Chem. 286, 32324–32332 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rubinsztein, D. C. Autophagy — alias self-eating — appetite and ageing. EMBO Rep. 13, 173–174 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    CAS  PubMed  Google Scholar 

  43. Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442 (2006).

    CAS  PubMed  Google Scholar 

  44. Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002). This is the first description of autophagy as a process that clears intracytoplasmic aggregation-prone proteins, and provides data in cell culture suggesting that autophagy induction may be a therapeutic strategy for certain neurodegenerative diseases.

    CAS  PubMed  Google Scholar 

  45. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    CAS  PubMed  Google Scholar 

  46. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    CAS  PubMed  Google Scholar 

  47. Menzies, F. M. et al. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133, 93–104 (2010).

    PubMed  Google Scholar 

  48. Spencer, B. et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29, 13578–13588 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chem. Biol. 4, 295–305 (2008). This paper describes a large-scale drug screen that identified a series of mTOR-independent autophagy inducers that have protective effects in cell, D. melanogaster and zebrafish models of Huntington's disease.

    CAS  Google Scholar 

  50. Zheng, S. et al. Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet. 6, e1000838 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C. J. & Rubinsztein, D. C. Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet. 15, 1209–1216 (2006).

    CAS  PubMed  Google Scholar 

  52. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  53. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006). References 52 and 53 describe how conditional loss of autophagy in the mammalian nervous system leads to cell death and aggregation of endogenous proteins.

    CAS  PubMed  Google Scholar 

  54. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nature Rev. Mol. Cell Biol. 12, 9–14 (2011).

    CAS  Google Scholar 

  55. Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest. 118, 2190–2199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Winslow, A. R. & Rubinsztein, D. C. The Parkinson disease protein α-synuclein inhibits autophagy. Autophagy 7, 429–431 (2010).

    Google Scholar 

  58. Corrochano, S. et al. α-synuclein levels affect autophagosome numbers in vivo and modulate Huntington disease pathology. Autophagy 8, 431–432 (2012).

    CAS  PubMed  Google Scholar 

  59. Jin, S. M. & Youle, R. J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125, 795–799 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Aguado, C. et al. Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum. Mol. Genet. 19, 2867–2876 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003).

    CAS  PubMed  Google Scholar 

  62. Ravikumar, B. et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nature Genet. 37, 771–776 (2005).

    CAS  PubMed  Google Scholar 

  63. Sarkar, S. et al. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell 43, 19–32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Raben, N., Shea, L., Hill, V. & Plotz, P. Monitoring autophagy in lysosomal storage disorders. Meth. Enzymol. 453, 417–449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Settembre, C. et al. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 17, 119–129 (2008).

    CAS  PubMed  Google Scholar 

  66. Rose, C. et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum. Mol. Genet. 19, 2144–2153 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Renna, M. et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J. Clin. Invest. 121, 3554–3563 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999). This paper describes BECN1 as a mammalian autophagy gene that is associated with tumour suppression.

    CAS  PubMed  Google Scholar 

  71. Yang, Z. J., Chee, C. E., Huang, S. & Sinicrope, F. A. The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10, 1533–1541 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Janku, F., McConkey, D. J., Hong, D. S. & Kurzrock, R. Autophagy as a target for anticancer therapy. Nature Rev. Clin. Oncol. 8, 528–539 (2011).

    CAS  Google Scholar 

  73. Mah, L. Y. & Ryan, K. M. Autophagy and cancer. Cold Spring Harb. Perspect. Biol. 4, a008821 (2012).

    PubMed  PubMed Central  Google Scholar 

  74. Amaravadi, R. K. et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17, 654–666 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59–65 (1999).

    CAS  PubMed  Google Scholar 

  76. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003). References 76 and 77 demonstrate that BECN1 is a haploinsufficient tumour supressor gene.

    CAS  PubMed  Google Scholar 

  78. Marino, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem. 282, 18573–18583 (2007).

    CAS  PubMed  Google Scholar 

  79. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Morselli, E. et al. Oncosuppressive functions of autophagy. Antioxid. Redox Signal. 14, 2251–2269 (2011).

    CAS  PubMed  Google Scholar 

  81. He, C. & Levine, B. The Beclin 1 interactome. Curr. Opin. Cell Biol. 22, 140–149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pimkina, J., Humbey, O., Zilfou, J. T., Jarnik, M. & Murphy, M. E. ARF induces autophagy by virtue of interaction with Bcl-xl. J. Biol. Chem. 284, 2803–2810 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tasdemir, E. et al. A dual role of p53 in the control of autophagy. Autophagy 4, 810–814 (2008).

    CAS  PubMed  Google Scholar 

  84. Morselli, E. et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle 10, 2763–2769 (2011).

    CAS  PubMed  Google Scholar 

  85. Morselli, E. et al. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7, 3056–3061 (2008).

    CAS  PubMed  Google Scholar 

  86. Furuta, S., Hidaka, E., Ogata, A., Yokota, S. & Kamata, T. Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23, 3898–3904 (2004).

    CAS  PubMed  Google Scholar 

  87. Kim, J. H. et al. Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy 7, 1187–1198 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu, S. Y. et al. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 13, 1171–1182 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011).

    CAS  PubMed  Google Scholar 

  90. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, M. J. et al. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J. Biol. Chem. 286, 12924–12932 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lock, R. et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22, 165–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367–1381 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009). This study describes how autophagy may limit tumour formation by preventing the accumulation of p62.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Poulogiannis, G. et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc. Natl Acad. Sci. USA 107, 15145–15150 (2010).

    CAS  PubMed  Google Scholar 

  96. Veeriah, S. et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genet. 42, 77–82 (2010).

    CAS  PubMed  Google Scholar 

  97. Inami, Y. et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193, 275–284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Duran, A. et al. The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis. Cancer Cell 13, 343–354 (2008).

    CAS  PubMed  Google Scholar 

  99. Duran, A. et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell 44, 134–146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117 (2011). This study describes a genome-wide screen to identify novel mediators of the selective autophagy of substrates, including the Sindbis virus capsid protein and damaged mitochondria.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kwei, K. A. et al. SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS ONE 6, e23924 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Birnbaum, D. J. et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50, 456–465 (2011).

    CAS  PubMed  Google Scholar 

  103. Loukopoulos, P. et al. Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci. 98, 392–400 (2007).

    CAS  PubMed  Google Scholar 

  104. Edinger, A. L. & Thompson, C. B. Defective autophagy leads to cancer. Cancer Cell 4, 422–424 (2003).

    CAS  PubMed  Google Scholar 

  105. Parkhitko, A. et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc. Natl Acad. Sci. USA 108, 12455–12460 (2011).

    CAS  PubMed  Google Scholar 

  106. Valentin-Vega, Y. A. et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119, 1490–1500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bellot, G. et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29, 2570–2581 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nature Rev. Cancer 7, 961–967 (2007).

    CAS  Google Scholar 

  110. Lee, S. J., Kim, H. P., Jin, Y., Choi, A. M. & Ryter, S. W. Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis. Autophagy 7, 829–839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Maycotte, P. et al. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8, 200–212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, B. X. et al. The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 5, 303–306 (2009).

    PubMed  Google Scholar 

  113. Kim, H. S. et al. Clinicopathologic correlation of beclin-1 expression in pancreatic ductal adenocarcinoma. Pathol. Res. Pract. 207, 247–252 (2011).

    CAS  PubMed  Google Scholar 

  114. Chen, Y., Lu, Y., Lu, C. & Zhang, L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1α expression. Pathol. Oncol. Res. 15, 487–493 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pirtoli, L. et al. The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy 5, 930–936 (2009).

    PubMed  Google Scholar 

  116. Ding, Z. B. et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res. 68, 9167–9175 (2008).

    CAS  PubMed  Google Scholar 

  117. Huang, J. J. et al. Beclin 1 expression predicts favorable clinical outcome in patients with diffuse large B-cell lymphoma treated with R-CHOP. Hum. Pathol. 42, 1459–1466 (2011).

    CAS  PubMed  Google Scholar 

  118. Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117, 326–336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mancias, J. D. & Kimmelman, A. C. Targeting autophagy addiction in cancer. Oncotarget 2, 1302–1306 (2011).

    PubMed  PubMed Central  Google Scholar 

  120. Kanzawa, T. et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448–457 (2004).

    CAS  PubMed  Google Scholar 

  121. Voss, V. et al. The pan-Bcl-2 inhibitor (–)-gossypol triggers autophagic cell death in malignant glioma. Mol. Cancer Res. 8, 1002–1016 (2010).

    CAS  PubMed  Google Scholar 

  122. Shen, S. et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 30, 4544–4556 (2011).

    CAS  PubMed  Google Scholar 

  123. Denton, D., Nicolson, S. & Kumar, S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ. 19, 87–95 (2012).

    CAS  PubMed  Google Scholar 

  124. Kaza, N., Kohli, L. & Roth, K. A. Autophagy in brain tumors: a new target for therapeutic intervention. Brain Pathol. 22, 89–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). This study describes how autophagy enables the immunogenic release of ATP from dying cells, which enhances the efficacy of antineoplastic chemotherapies.

    CAS  PubMed  Google Scholar 

  126. Cuzick, J. et al. Preventive therapy for breast cancer: a consensus statement. Lancet Oncol. 12, 496–503 (2011).

    CAS  PubMed  Google Scholar 

  127. Bursch, W. et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17, 1595–1607 (1996).

    CAS  PubMed  Google Scholar 

  128. Yuk, J. M. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6, 231–243 (2009).

    CAS  PubMed  Google Scholar 

  129. Wang, J., Lian, H., Zhao, Y., Kauss, M. A. & Spindel, S. Vitamin D3 induces autophagy of human myeloid leukemia cells. J. Biol. Chem. 283, 25596–25605 (2008).

    CAS  PubMed  Google Scholar 

  130. Wang, R. C. & Levine, B. Calcipotriol induces autophagy in HeLa cells and keratinocytes. J. Invest. Dermatol. 131, 990–993 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Fleet, J. C., DeSmet, M., Johnson, R. & Li, Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem. J. 441, 61–76 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Grumati, P. et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI deficient muscles. Autophagy 7, 1415–1423 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cummings, S. R. et al. Prevention of breast cancer in postmenopausal women: approaches to estimating and reducing risk. J. Natl Cancer Inst. 101, 384–398 (2009).

    PubMed  PubMed Central  Google Scholar 

  134. Friedenreich, C. M. & Orenstein, M. R. Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J. Nutr. 132, 3456S–3464S (2002).

    CAS  PubMed  Google Scholar 

  135. Harriss, D. J. et al. Lifestyle factors and colorectal cancer risk (2): a systematic review and meta-analysis of associations with leisure-time physical activity. Colorectal Dis. 11, 689–701 (2009).

    CAS  PubMed  Google Scholar 

  136. Decensi, A. et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res. 3, 1451–1461 (2010).

    CAS  Google Scholar 

  137. Wilkinson, S., O'Prey, J., Fricker, M. & Ryan, K. M. Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev. 23, 1283–1288 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Virgin, H. W. & Levine, B. Autophagy genes in immunity. Nature Immunol. 10, 461–470 (2009).

    CAS  Google Scholar 

  139. Deretic, V. & Levine, B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527–549 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Joubert, P. et al. Chikungunya virus-induced autophagy delays caspase-dependent cell death. J. Exp. Med. 209, 1029–1047 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Sumpter, R. Jr & Levine, B. Autophagy and innate immunity: triggering, targeting and tuning. Semin. Cell Dev. Biol. 21, 699–711 (2010).

    PubMed  PubMed Central  Google Scholar 

  144. Orvedahl, A. O. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Mazanillo, P., Watson, R. O. & Cox, J. S. Detection of mycobacterial DNA activates ubiquitin-mediated autophagy and is essential for control of M. tuberculosis infection. Cell (in the press).

  146. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004). This paper describes for the first time that mycobacteria are autophagy substrates.

    CAS  PubMed  Google Scholar 

  147. Intemann, C. D. et al. Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog. 5, e1000577 (2009).

    PubMed  PubMed Central  Google Scholar 

  148. Kumar, D. et al. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140, 731–743 (2010).

    CAS  PubMed  Google Scholar 

  149. Campbell, G. R. & Spector, S. A. Hormonally active vitamin D3 (1α, 25-dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. J. Biol. Chem. 286, 18890–18902 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Campbell, G. R. & Spector, S. A. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog. 8, e1002689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kim, J. J. et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11, 457–468 (2012).

    CAS  PubMed  Google Scholar 

  152. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, H. K. et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227–239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. English, L. et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nature Immunol. 10, 480–487 (2009).

    CAS  Google Scholar 

  155. Li, Y. et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68, 6889–6895 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007).

    CAS  PubMed  Google Scholar 

  157. Jagannath, C. et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nature Med. 15, 267–276 (2009). This study describes how autophagy increases the efficacy of antituberculosis vaccination.

    CAS  PubMed  Google Scholar 

  158. Deretic, V. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr. Opin. Immunol. 24, 21–31 (2012).

    CAS  PubMed  Google Scholar 

  159. Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30, 4701–4711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hwang, S. et al. Nondegradative role of Atg5–Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon γ. Cell Host Microbe 11, 397–409 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    CAS  PubMed  Google Scholar 

  162. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008). This study describes how compromised function of ATG16L1 and disrupted autophagy in the intestine may result in Crohn's disease-like pathology, providing support for a role of this pathway and/or ATG16L1 in this disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Starr, T. et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33–45 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Heaton, N. S. & Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Li, J. et al. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J. Virol. 85, 6319–6333 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kyei, G. B. et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 186, 255–268 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Tian, Y., Sir, D., Kuo, C. F., Ann, D. K. & Ou, J. H. Autophagy required for hepatitis B virus replication in transgenic mice. J. Virol. 85, 13453–13456 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Alirezaei, M., Flynn, C. T., Wood, M. R. & Whitton, J. L. Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. Cell Host Microbe 11, 298–305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Sun, Y. et al. Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection. Sci. Signal. 5, ra16 (2012).

    PubMed  Google Scholar 

  170. Chaumorcel, M. et al. The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J. Virol. 86, 2571–2584 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Orvedahl, A. et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

    CAS  Google Scholar 

  172. Leib, D. A., Alexander, D. E., Cox, D., Yin, J. & Ferguson, T. A. Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J. Virol. 83, 12164–12171 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. E., X. et al. Viral Bcl-2-mediated evasion of autophagy aids chronic infection of γherpesvirus 68. PLoS Pathog. 5, e1000609 (2009).

    PubMed  PubMed Central  Google Scholar 

  174. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011). This paper describes how phosphorylation of an autophagy receptor protein may increase its substrate affinity.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu, Q., Thoreen, C., Wang, J., Sabatini, D. & Gray, N. S. mTOR mediated anti-cancer drug discovery. Drug Discov. Today Ther. Strateg. 6, 47–55 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Nyfeler, B. et al. Relieving autophagy and 4EBP1 from rapamycin resistance. Mol. Cell. Biol. 31, 2867–2876 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Raynaud, F. I. et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 67, 5840–5850 (2007).

    CAS  PubMed  Google Scholar 

  179. Degtyarev, M. et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J. Cell Biol. 183, 101–116 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Alers, S., Loffler, A. S., Wesselborg, S. & Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32, 2–11 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    CAS  PubMed  Google Scholar 

  182. Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170, 1101–1111 (2005). This study was the first to demonstrate a mammalian autophagy pathway that was independent of mTOR.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Cardenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Hidvegi, T. et al. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229–232 (2010).

    CAS  PubMed  Google Scholar 

  185. Morselli, E. et al. Caloric restriction and resveratrol promote longevity through the sirtuin-1-dependent induction of autophagy. Cell Death Dis. 1, e10 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nature Cell Biol. 11, 1305–1314 (2009).

    CAS  PubMed  Google Scholar 

  187. Li, X. & Fan, Z. The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1α and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Res. 70, 5942–5952 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Maiuri, M. C. et al. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-XL . Autophagy 3, 374–376 (2007).

    CAS  PubMed  Google Scholar 

  189. Underwood, B. R. & Rubinsztein, D. C. Spinocerebellar ataxias caused by polyglutamine expansions: a review of therapeutic strategies. Cerebellum 7, 215–221 (2008).

    CAS  PubMed  Google Scholar 

  190. Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum. Mol. Genet. 10, 1307–1315 (2001).

    CAS  PubMed  Google Scholar 

  191. Joo, J. H. et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol. Cell 43, 572–585 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Labbadia, J. et al. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Invest. 121, 3306–3319 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zarogoulidis, P. et al. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur. J. Clin. Pharmacol. 68, 479–503 (2011).

    PubMed  Google Scholar 

  194. Esther, C. R. et al. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J. Cyst. Fibros. 9, 117–123 (2010).

    PubMed  Google Scholar 

  195. Roux, A. L. et al. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J. Clin. Microbiol. 47, 4124–4128 (2009).

    PubMed  PubMed Central  Google Scholar 

  196. Rubinsztein, D. C. et al. In search of an “autophagomometer”. Autophagy 5, 585–589 (2009).

    CAS  PubMed  Google Scholar 

  197. Jain, A. et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576–22591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Larsen, K. B. et al. A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 6, 784–793 (2010).

    CAS  PubMed  Google Scholar 

  199. Renna, M., Jimenez-Sanchez, M., Sarkar, S. & Rubinsztein, D. C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J. Biol. Chem. 285, 11061–11067 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu, J. et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147, 223–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Miller, S. et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327, 1638–1642 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Noda, N. N. et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44, 462–475 (2011).

    CAS  PubMed  Google Scholar 

  203. Taherbhoy, A. M. et al. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44, 451–461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Kumanomidou, T. et al. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol. 355, 612–618 (2006).

    CAS  PubMed  Google Scholar 

  205. Sugawara, K. et al. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem. 280, 40058–40065 (2005).

    CAS  PubMed  Google Scholar 

  206. DeSelm, C. J. et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell 21, 966–974 (2011). This paper describes how components of the autophagic machinery are required for aspects of secretion that may be autophagy-independent.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    CAS  PubMed  Google Scholar 

  208. Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nature Cell Biol. 13, 1335–1343 (2011).

    CAS  PubMed  Google Scholar 

  209. Radoshevich, L. et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142, 590–600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nature Rev. Mol. Cell Biol. 13, 7–12 (2011).

    Google Scholar 

  211. Yang, D. S. et al. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy 7, 788–789 (2011).

    PubMed  PubMed Central  Google Scholar 

  212. Dupont, N., Temime-Smaali, N. & Lafont, F. How ubiquitination and autophagy participate in the regulation of the cell response to bacterial infection. Biol. Cell 102, 621–634 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011). This study describes how the transcription factor TFEB coordinately regulates both lysosomal biogenesis and autophagy.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Duran, J. M., Anjard, C., Stefan, C., Loomis, W. F. & Malhotra, V. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 188, 527–536 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Manjithaya, R., Anjard, C., Loomis, W. F. & Subramani, S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188, 537–546 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Bruns, C., McCaffery, J. M., Curwin, A. J., Duran, J. M. & Malhotra, V. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J. Cell Biol. 195, 979–992 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Proikas-Cezanne, T. & Codogno, P. Beclin 1 or not Beclin 1. Autophagy 7, 671–672 (2011).

    CAS  PubMed  Google Scholar 

  218. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011). This paper advances the understanding of amino acid sensing by showing that amino acids are detected within the lysosome by the vacuolar V-ATPase.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Gutierrez, M. G., Munafo, D. B., Beron, W. & Colombo, M. I. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117, 2687–2697 (2004).

    CAS  PubMed  Google Scholar 

  222. Jager, S. et al. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 117, 4837–4848 (2004).

    PubMed  Google Scholar 

  223. Fader, C. M., Sanchez, D., Furlan, M. & Colombo, M. I. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in K562 cells. Traffic 9, 230–250 (2008).

    CAS  PubMed  Google Scholar 

  224. Itoh, T. et al. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell 19, 2916–2925 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature Cell Biol. 8, 688–699 (2006).

    CAS  PubMed  Google Scholar 

  226. Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biol. 11, 385–396 (2009).

    CAS  PubMed  Google Scholar 

  227. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biol. 11, 468–476 (2009).

    CAS  PubMed  Google Scholar 

  228. Atlashkin, V. et al. Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Mol. Cell. Biol. 23, 5198–5207 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Fader, C. M., Sanchez, D. G., Mestre, M. B. & Colombo, M. I. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793, 1901–1916 (2009).

    CAS  PubMed  Google Scholar 

  230. Furuta, N., Fujita, N., Noda, T., Yoshimori, T. & Amano, A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21, 1001–1010 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Renna, M. et al. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell Sci. 124, 469–482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G. & Gao, F. B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561–1567 (2007).

    CAS  PubMed  Google Scholar 

  234. Rusten, T. E. et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17, 1817–1825 (2007).

    CAS  PubMed  Google Scholar 

  235. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    CAS  PubMed  Google Scholar 

  236. Aplin, A. et al. Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J. Cell Physiol. 152, 458–466 (1992).

    CAS  PubMed  Google Scholar 

  237. Fass, E., Shvets, E., Degani, I., Hirschberg, K. & Elazar, Z. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem. 281, 36303–36316 (2006).

    CAS  PubMed  Google Scholar 

  238. Kochl, R., Hu, X. W., Chan, E. Y. & Tooze, S. A. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7, 129–145 (2006).

    CAS  PubMed  Google Scholar 

  239. Jahreiss, L., Menzies, F. M. & Rubinsztein, D. C. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9, 574–587 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Kimura, S., Noda, T. & Yoshimori, T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct. Funct. 33, 109–122 (2008).

    CAS  PubMed  Google Scholar 

  241. Geeraert, C. et al. Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J. Biol. Chem. 285, 24184–24194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Mousavi, S. A. et al. Effects of inhibitors of the vacuolar proton pump on hepatic heterophagy and autophagy. Biochim. Biophys. Acta 1510, 243–257 (2001).

    CAS  PubMed  Google Scholar 

  243. Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33–42 (1998).

    CAS  PubMed  Google Scholar 

  244. Yang, Z., Huang, J., Geng, J., Nair, U. & Klionsky, D. J. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol. Biol. Cell 17, 5094–5104 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Rong, Y. et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl Acad. Sci. USA 108, 7826–7831 (2011).

    CAS  PubMed  Google Scholar 

  246. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004). This paper describes how mTOR inhibition induces autophagy and ameliorates the toxicity of the huntingtin mutation in D. melangaster and mouse models of Huntington's disease.

    CAS  PubMed  Google Scholar 

  247. Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    PubMed  Google Scholar 

  248. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 13, 132–141 (2011). This study describes ULK1 as a direct target of both mTOR and AMPK.

    CAS  PubMed  Google Scholar 

  249. Meley, D. et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870–34879 (2006).

    CAS  PubMed  Google Scholar 

  250. Malik, S. A. et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30, 3918–3929 (2011).

    CAS  PubMed  Google Scholar 

  251. Vicencio, J. M. et al. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ. 16, 1006–1017 (2009).

    CAS  PubMed  Google Scholar 

  252. Jeong, J. K. et al. Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci. Res. 73, 99–105 (2012).

    CAS  PubMed  Google Scholar 

  253. Opipari, A. W. Jr et al. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res. 64, 696–703 (2004).

    CAS  PubMed  Google Scholar 

  254. Armour, S. M. et al. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging 1, 515–528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Gorzalczany, Y. et al. Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: a beneficial strategy to combat non-small cell lung cancer. Cancer Lett. 310, 207–215 (2011).

    CAS  PubMed  Google Scholar 

  256. Han, W. et al. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS ONE 6, e18691 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Punnonen, E. L. & Reunanen, H. Effects of vinblastine, leucine, and histidine, and 3-methyladenine on autophagy in Ehrlich ascites cells. Exp. Mol. Pathol. 52, 87–97 (1990).

    CAS  PubMed  Google Scholar 

  258. Webb, J. L., Ravikumar, B. & Rubinsztein, D. C. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int. J. Biochem. Cell Biol. 36, 2541–2550 (2004).

    CAS  PubMed  Google Scholar 

  259. Reunanen, H., Marttinen, M. & Hirsimaki, P. Effects of griseofulvin and nocodazole on the accumulation of autophagic vacuoles in Ehrlich ascites tumor cells. Exp. Mol. Pathol. 48, 97–102 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.C.R. is supported by the Wellcome Trust (Principal Fellowship), a Wellcome Trust/Medical Research Council Strategic Award on Neurodegenerative Diseases, the UK Medical Research Council and the National Institute for Health Research Biomedical Research Unit in Dementia at Addenbrooke's Hospital, Cambridge, UK. B.L. is supported by US National Institutes of Health (NIH) grants RO1 CA109618 and U54AI057156. P.C. is supported by INSERM, Université Paris-Sud 11, Agence Nationale pour la Recherche and Institut National du Cancer. The authors are grateful to F. Menzies and W. Hochfeld for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David C. Rubinsztein, Patrice Codogno or Beth Levine.

Ethics declarations

Competing interests

David C. Rubinsztein has received honorarium for speaking at a symposium organized by Pfizer, and received partial funding for his Ph.D. from Lilly. Patrice Codogno and Beth Levine declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David C. Rubinsztein's homepage

Patrice Codogno's homepage

Beth Levine's homepage

ClinicalTrials.gov website

Glossary

Autophagosomes

Double-membrane vesicles that engulf cytoplasmic contents for delivery to the lysosome.

Phagophore

A cup-shaped, double-membrane autophagic precursor structure.

Microtubule organizing centre

A structure near the nucleus of eukaryotic cells, from which microtubules emerge.

Class III phosphoinositide 3-kinases

(PI3Ks; also known as PIK3C3 or VPS34). Enzymes that produce phosphatidylinositol-3-phosphate (PtdIns3P).

SNAREs

Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein (SNAP) receptors; these molecules enable vesicle fusion events.

Selective autophagy

Autophagic processes involving the preferential recruitment of specific substrates, in contrast to random bulk cytoplasmic sequestration.

Gluconeogenesis

A metabolic pathway that generates glucose from non-carbohydrate carbon sources, thus preventing blood sugar levels from becoming too low.

Pancreatic β-cells

Insulin-producing cells in the pancreas.

Dynactin

A component of the dynein motor complex.

Tumour suppressor genes

Genes that protect cells from one of the steps along the pathway to cancer.

Autophagy adaptor proteins

Proteins that mediate selective autophagy: for example, ubiquitin-binding protein p62 (also known as sequestosome 1).

Short hairpin RNA

Small RNAs that form hairpins that can induce sequence-specific silencing in mammalian cells through RNA interference.

Lysosomotropic agents

Compounds that accumulate preferentially in lysosomes; many weak bases are lysosomotropic agents.

Encephalitis

Inflammation in the brain.

Interferon

A type of protein made and released by host cells in response to bacteria, viruses and tumour cells.

MHC class II

Major histocompatibility complex (MHC) class II; molecules that are found on antigen-presenting cells and lymphocytes. The antigens presented by MHC class II molecules are derived from extracellular proteins.

MHC class I

Major histocompatibility complex (MHC) class I; molecules that are found on the surfaces of all nucleated cells and present peptides derived from cytosolic proteins.

Paneth cells

Cells in the small intestine that assist in antibacterial defence.

Autophagosome maturation

The processes occurring after the completion of autophagosome closure that enable the delivery of the autophagosome to — and its degradation in — the lysosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinsztein, D., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11, 709–730 (2012). https://doi.org/10.1038/nrd3802

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3802

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer