Abstract
Do non-coding RNAs that are derived from the introns and exons of protein-coding and non-protein-coding genes represent a fundamental advance in the genetic operating system of higher organisms? Recent evidence from comparative genomics and molecular genetics indicates that this might be the case. If so, there will be profound consequences for our understanding of the genetics of these organisms, and in particular how the trajectories of differentiation and development and the differences among individuals and species are genomically programmed. But how might this hypothesis be tested?
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Wassarman, K. M., Zhang, A. & Storz, G. Small RNAs in Escherichia coli. Trends Microbiol. 7, 37–45 (1999).
Argaman, L. et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11, 941–950 (2001).
Klein, R. J., Misulovin, Z. & Eddy, S. R. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc. Natl Acad. Sci. USA 99, 7542–7547 (2002).
Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).
Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial transcription logic. Proc. Natl Acad. Sci. USA 100, 5136–5141 (2003).
Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).
Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).
Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002).
Harrison, P. M. et al. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res. 12, 272–280 (2002).
Mattick, J. S. Introns: evolution and function. Curr. Opin. Genet. Dev. 4, 823–831 (1994).
Mattick, J. S. & Gagen, M. J. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol. 18, 1611–1630 (2001).
Mattick, J. S. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2, 986–991 (2001).
Mattick, J. S. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 25, 930–939 (2003).
Weng, G., Bhalla, U. S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92–96 (1999).
Dennett, D. Darwin's Dangerous Idea: Evolution and the Meanings of Life (Simon Schuster, New York, 1995).
Li, M. & Vitanyi, P. M. B. An Introduction to Kolmogorov Complexity and its Applications 2nd edn (Springer, New York, 1997).
Croft, L. J., Lercher, M. J., Gagen, M. J. & Mattick, J. S. Is prokaryotic complexity limited by accelerated growth in regulatory overhead? Genome Biol. Preprint Depository [online], <http://genomebiology.com/qc/2003/5/1/p2> (2003).
Gagen, M. J. & Mattick, J. S. Inherent size constraints on prokaryote gene networks due to 'accelerating' growth. arXiv Preprint Archive [online], <http://arXiv.org/abs/q-bio.MN/0312021> (2004).
Gagen, M. J. & Mattick, J. S. Failed 'nonaccelerating' models of prokaryote gene regulatory networks. arXiv Preprint Archive [online], <http://arXiv.org/abs/q-bio.MN/0312022> (2004).
Scherer, S. W. et al. Human chromosome 7: DNA sequence and biology. Science 300, 767–772 (2003).
Tycowski, K. T., Shu, M. D. & Steitz, J. A. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466 (1996).
Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148 (2002).
Bachellerie, J. P., Cavaille, J. & Huttenhofer, A. The expanding snoRNA world. Biochimie 84, 775–790 (2002).
Sutherland, H. F. et al. Identification of a novel transcript disrupted by a balanced translocation associated with DiGeorge syndrome. Am. J. Hum. Genet. 59, 23–31 (1996).
Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999).
Raho, G., Barone, V., Rossi, D., Philipson, L. & Sorrentino, V. The gas 5 gene shows four alternative splicing patterns without coding for a protein. Gene 256, 13–17 (2000).
Charlier, C. et al. Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res. 11, 850–862 (2001).
Wolf, S. et al. B-cell neoplasia associated gene with multiple splicing (BCMS): the candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions. Hum. Mol. Genet. 10, 1275–1285 (2001).
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494–2509 (1997).
Akhtar, A., Zink, D. & Becker, P. B. Chromodomains are protein–RNA interaction modules. Nature 407, 405–409 (2000).
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).
Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).
Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).
Shabalina, S. A., Ogurtsov, A. Y., Kondrashov, V. A. & Kondrashov, A. S. Selective constraint in intergenic regions of human and mouse genomes. Trends Genet. 17, 373–376 (2001).
Kirkness, E. F. et al. The dog genome: survey sequencing and comparative analysis. Science 301, 1898–1903 (2003).
Thomas, J. W. et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424, 788–793 (2003).
Frazer, K. A. et al. Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional. Genome Res. 14, 367–372 (2004).
Ridanpaa, M. et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104, 195–203 (2001).
Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).
Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 6087–6097 (2003).
Numata, K. et al. Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. Genome Res. 13, 1301–1306 (2003).
Storz, G. An expanding universe of noncoding RNAs. Science 296, 1260–1263 (2002).
Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002).
Kiyosawa, H., Yamanaka, I., Osato, N., Kondo, S. & Hayashizaki, Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res. 13, 1324–1334 (2003).
Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nature Biotechnol. 21, 379–386 (2003).
Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nature Genet. 34, 157–165 (2003).
Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).
Andersen, A. A. & Panning, B. Epigenetic gene regulation by noncoding RNAs. Curr. Opin. Cell Biol. 15, 281–289 (2003).
Kiyosawa, H. & Abe, K. Speculations on the role of natural antisense transcripts in mammalian X chromosome evolution. Cytogenet. Genome Res. 99, 151–156 (2002).
Hirotsune, S. et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423, 91–96 (2003).
Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003).
Palatnik, J. F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).
Hall, I. M., Noma, K. & Grewal, S. I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA 100, 193–198 (2003).
Volpe, T. et al. RNA interference is required for normal centromere function in fission yeast. Chromosome Res. 11, 137–146 (2003).
Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110, 689–699 (2002).
McManus, M. T. MicroRNAs and cancer. Semin. Cancer Biol. 13, 253–258 (2003).
Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosom. Cancer 39, 167–169 (2004).
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).
Llave, C., Kasschau, K. D., Rector, M. A. & Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).
Georges, M., Charlier, C. & Cockett, N. The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet. 19, 248–252 (2003).
Van Laere, A. S. et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425, 832–836 (2003).
Drewell, R. A., Bae, E., Burr, J. & Lewis, E. B. Transcription defines the embryonic domains of cis-regulatory activity at the Drosophila bithorax complex. Proc. Natl Acad. Sci. USA 99, 16853–16858 (2002).
Rank, G., Prestel, M. & Paro, R. Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol. Cell Biol. 22, 8026–8034 (2002).
Toulme, J. J., Di Primo, C. & Moreau, S. Modulation of RNA function by oligonucleotides recognizing RNA structure. Prog. Nucleic Acid Res. Mol. Biol. 69, 1–46 (2001).
Vasquez, K. M. & Glazer, P. M. Triplex-forming oligonucleotides: principles and applications. Q. Rev. Biophys. 35, 89–107 (2002).
Sczyrba, A., Kruger, J., Mersch, H., Kurtz, S. & Giegerich, R. RNA-related tools on the Bielefeld Bioinformatics Server. Nucleic Acids Res. 31, 3767–3770 (2003).
Sadakane, K. & Shibuya, T. Indexing huge genome sequences for solving various problems. Genome Inform. Ser. Workshop Genome Inform. 12, 175–183 (2001).
Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).
Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).
Cavalier-Smith, T. Intron phylogeny: a new hypothesis. Trends Genet. 7, 145–148 (1991).
Lynch, M. & Richardson, A. O. The evolution of spliceosomal introns. Curr. Opin. Genet. Dev. 12, 701–710 (2002).
Taft, R. J. & Mattick, J. S. Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. arXiv Preprint Archive [online], <http://www.arxiv.org/abs/q-bio.GN/0401020> (2003).
Conway Morris, S. The Cambrian 'explosion': slow-fuse or megatonnage? Proc. Natl Acad. Sci. USA 97, 4426–4429 (2000).
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).
Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14, 331–342 (2004).
Acknowledgements
I thank the members of my research group, collaborators and colleagues for stimulating discussions and for their input into different aspects of this work.
Author information
Authors and Affiliations
Related links
Related links
DATABASES
LocusLink
OMIM
FURTHER INFORMATION
Glossary
- EFFERENCE RNA SIGNALS
-
Regulatory RNA signals that are produced in parallel with the primary gene product that allow forward control and coordination of networks of gene activity.
- GENE ONTOLOGY
-
A hierarchical organization of concepts (ontology) with three organizing principles: molecular function, the tasks done by individual gene products; biological process that are accomplished by ordered assemblies of molecular functions; and cellular components, subcellular structures, locations and macromolecular complexes.
- IMPRINTED LOCI
-
Loci at which the expression of an allele is different depending on whether it is inherited from the mother or the father.
- SPLICEOSOME
-
A ribonucleoprotein complex that is involved in splicing nuclear pre-mRNA. It consists of 5 small nuclear ribonucleoproteins (snRNPs) and more than 50 non-snRNPs, which recognize and assemble on exon–intron boundaries to catalyse the excision of introns from the pre-mRNA.
- SUFFIX ARRAYS
-
An array of all terminal substrings of a sequence string in lexicographical order, which allows a binary search.
- SUFFIX TREES
-
A compact representation of a tree that corresponds to the suffixes of a given string in which all nodes with one child are merged with their parents in a branching structure.
- TRANSINDUCTION
-
The induction of intergenic transcription of the β-globin cluster in non-erythroid cells by the expression of transiently transfected β-globin genes, which is not dependent on protein expression.
- TRANSVECTION
-
Apparent cross-talk between alleles, in which complementation is observed between promoter mutations in one allele and structural mutations in the other, although in many cases the promoter region itself might produce a separate transcript.
Rights and permissions
About this article
Cite this article
Mattick, J. RNA regulation: a new genetics?. Nat Rev Genet 5, 316–323 (2004). https://doi.org/10.1038/nrg1321
Issue Date:
DOI: https://doi.org/10.1038/nrg1321