Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Silencing chromatin: comparing modes and mechanisms

Key Points

  • The transcriptional activity of a gene is dependent on the local composition and organization of its chromatin environment.

  • Chromatin-based silencing of sequence information is based on three sequential steps: a decision-making process that targets specific silencing complexes to DNA sequences to be inactivated; a chromatin-structuring process that results in efficient inhibition of RNA polymerases or other nuclear enzymes that interfere with genetic information; and the epigenetic part, the propagation of the silent chromatin through DNA replication and mitosis to the daughter cells.

  • Heterochromatin formation and Polycomb-mediated gene repression are two major gene-silencing mechanisms responsible for the stable transmission of repressed transcription states through cell generations.

  • Heterochromatin and the Polycomb system apply similar molecular mechanisms to gene targeting. These mechanisms include: trans-acting DNA-binding proteins, cis-acting DNA elements, non-coding RNAs and proteins that set and recognize specific histone marks.

  • Different targeting pathways acting in parallel could ensure proper silencing of important genomic regions and developmental regulators. Alternatively, some pathways could act separately on specific sets of target genes, whereas others could act in a combinatorial way.

  • The initiation of PcG silencing, as well as heterochromatin formation, seems to rely on DNA-binding proteins, implying that the specificity is generated by underlying DNA sequences rather than by certain protein features of the chromatin environment.

  • Histone methylation marks and cis-acting non-coding RNAs provide multiple binding sites that may increase the local concentration of heterochromatin and PcG complexes in cis. Although both types of interaction are of relatively low affinity, the multitude of binding sites may generate a local high-affinity environment that acts as a molecular cage to dynamically maintain chromatin-regulating protein complexes in place at the target genes.

  • HOTAIR, a trans-acting long intergenic non-coding RNA that is involved in the repression of Polycomb target genes at the mammalian HOXD locus, seems to act as a scaffold, organizing the concerted action of Polycomb repressive complex 2 (PRC2) and the histone H3 lysine 4 (H3K4)-specific demethylase LSD1. Similarly, nascent chromatin-associated transcripts serve as assembly platforms for heterochromatin complexes in fission yeast.

  • The maintenance of epigenetic signals through the process of replication may be explained by self-reinforcing loops that propagate histone-methylation patterns to the two daughter strands. On the other hand, the reactivation of the RNAi machinery at centromeric repeats in early S phase resembles the re-establishment of heterochromatin and its propagation through the replication process in fission yeast, offering an attractive alternative model.

  • PcG-mediated repression may be the default state, whereas Trithorax group proteins such as mammalian mixed lineage leukaemia 1 (MLL1) may act as anti-silencing factors that bookmark genes during mitosis in order to render them rapidly activatable on mitotic exit.

Abstract

Recent transcriptome analyses show that substantial proportions of eukaryotic genomes can be copied into RNAs, many of which do not encode protein sequences. However, cells have developed mechanisms to control and counteract the high transcriptional activity of RNA polymerases in order to achieve cell-specific gene activity or to prevent the expression of deleterious sequences. Here we compare how two silencing modes — the Polycomb system and heterochromatin — are targeted, established and maintained at different chromosomal locations and how DNA-binding proteins and non-coding RNAs connect these epigenetically stable and heritable structures to the sequence information of the DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types of repressed chromatin and the protein complexes involved.
Figure 2: Targeting mechanisms for heterochromatin and Polycomb group proteins.
Figure 3: Current working models for RNA-mediated recruitment mechanisms.
Figure 4: Current working models for the propagation of silent chromatin through replication and mitosis.
Figure 5: A model for the targeting and anchoring of silencing complexes.

Similar content being viewed by others

References

  1. Chow, J. & Heard, E. X inactivation and the complexities of silencing a sex chromosome. Curr. Opin. Cell Biol. 21, 359–366 (2009).

    CAS  PubMed  Google Scholar 

  2. Simon, J., Chiang, A., Bender, W., Shimell, M. J. & O'Connor, M. Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev. Biol. 158, 131–144 (1993).

    CAS  PubMed  Google Scholar 

  3. Müller, J. & Kassis, J. A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr. Opin. Genet. Dev. 16, 476–484 (2006).

    Article  PubMed  Google Scholar 

  4. Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223–232 (2007).

    CAS  PubMed  Google Scholar 

  5. Biggin, M. D. & Tjian, R. Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 53, 699–711 (1988).

    CAS  PubMed  Google Scholar 

  6. Blastyak, A., Mishra, R. K., Karch, F. & Gyurkovics, H. Efficient and specific targeting of Polycomb group proteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Mol. Cell. Biol. 26, 1434–1444 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, J. L., Grau, D. J., DeVido, S. K. & Kassis, J. A. An Sp1/KLF binding site is important for the activity of a Polycomb group response element from the Drosophila engrailed gene. Nucleic Acids Res. 33, 5181–5189 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dejardin, J. et al. Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434, 533–538 (2005).

    CAS  PubMed  Google Scholar 

  9. Horard, B., Tatout, C., Poux, S. & Pirrotta, V. Structure of a polycomb response element and in vitro binding of Polycomb group complexes containing GAGA factor. Mol. Cell. Biol. 20, 3187–3197 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, D. H., Chang, Y. L., Yang, C. C., Pan, I. C. & King, B. pipsqueak encodes a factor essential for sequence-specific targeting of a polycomb group protein complex. Mol. Cell. Biol. 22, 6261–6271 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hur, M. W., Laney, J. D., Jeon, S. H., Ali, J. & Biggin, M. D. Zeste maintains repression of Ubx transgenes: support for a new model of Polycomb repression. Development 129, 1339–1343 (2002).

    CAS  PubMed  Google Scholar 

  12. Matharu, N. K., Hussain, T., Sankaranarayanan, R. & Mishra, R. K. Vertebrate homologue of Drosophila GAGA factor. J. Mol. Biol. 400, 434–447 (2010).

    CAS  PubMed  Google Scholar 

  13. Schuettengruber, B. & Cavalli, G. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136, 3531–3542 (2009).

    CAS  PubMed  Google Scholar 

  14. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    CAS  PubMed  Google Scholar 

  15. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Endoh, M. et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135, 1513–1524 (2008).

    CAS  PubMed  Google Scholar 

  17. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Squazzo, S. L. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 16, 890–900 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Birke, M. et al. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res. 30, 958–965 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009).

    CAS  PubMed  Google Scholar 

  22. Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers Polycomb-group responsiveness. Cell 140, 99–110 (2010). This study identifies the first mammalian PRE, which enables the maintenance of the repressed transcription state through the process of cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Atchison, L., Ghias, A., Wilkinson, F., Bonini, N. & Atchison, M. L. Transcription factor YY1 functions as a PcG protein in vivo. EMBO J. 22, 1347–1358 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, H., Kang, K. & Kim, J. AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res. 37, 2940–2950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng, J. C. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Shen, X. et al. Jumonji modulates Polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nature Cell Biol. 12, 618–624 (2010).

    CAS  PubMed  Google Scholar 

  28. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010). The work reported in references 25–29 shows that JARID2 interacts with PRC2 and coordinates the binding of PRC2 to target genes in ES cells.

    CAS  PubMed  Google Scholar 

  30. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    CAS  PubMed  Google Scholar 

  31. Loh, Y.-H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    CAS  PubMed  Google Scholar 

  32. Takeuchi, T. et al. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9, 1211–1222 (1995).

    CAS  PubMed  Google Scholar 

  33. Kim, T. G., Kraus, J. C., Chen, J. & Lee, Y. JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. J. Biol. Chem. 278, 42247–42255 (2003).

    CAS  PubMed  Google Scholar 

  34. Buhler, M. & Gasser, S. M. Silent chromatin at the middle and ends: lessons from yeasts. EMBO J. 28, 2149–2161 (2009).

    PubMed  PubMed Central  Google Scholar 

  35. Grewal, S. I. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev. 20, 134–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    CAS  PubMed  Google Scholar 

  37. Kanoh, J., Sadaie, M., Urano, T. & Ishikawa, F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr. Biol. 15, 1808–1819 (2005).

    CAS  PubMed  Google Scholar 

  38. Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).

    CAS  PubMed  Google Scholar 

  39. Yamada, T., Fischle, W., Sugiyama, T., Allis, C. D. & Grewal, S. I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20, 173–185 (2005).

    CAS  PubMed  Google Scholar 

  40. Sripathy, S. P., Stevens, J. & Schultz, D. C. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol. Cell. Biol. 26, 8623–8638 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd . SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. O'Geen, H. et al. Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet. 3, e89 (2007).

    PubMed  PubMed Central  Google Scholar 

  43. Groner, A. C. et al. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 6, e1000869 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Vogel, M. J. et al. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 16, 1493–1504 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010). This paper shows that KAP1 controls endogenous retroviruses in ES cells. It is potentially recruited by KRAB-ZFP transcription factors and may deposit HP1 for heterochromatin silencing.

    CAS  PubMed  Google Scholar 

  46. Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    CAS  PubMed  Google Scholar 

  47. Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bayne, E. H. et al. Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140, 666–677 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kagansky, A. et al. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 324, 1716–1719 (2009). This demonstrates that tethering of Clr4 to euchromatic sites in fission yeast results in the formation of 'synthetic' heterochromatin even without active RNAi machinery.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brower-Toland, B. et al. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev. 21, 2300–2311 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Grishok, A., Sinskey, J. L. & Sharp, P. A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev. 19, 683–696 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Henderson, I. R. & Jacobsen, S. E. Epigenetic inheritance in plants. Nature 447, 418–424 (2007).

    CAS  PubMed  Google Scholar 

  53. Bender, W. & Fitzgerald, D. P. Transcription activates repressed domains in the Drosophila bithorax complex. Development 129, 4923–4930 (2002).

    CAS  PubMed  Google Scholar 

  54. Hogga, I. & Karch, F. Transcription through the iab-7 cis-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. Development 129, 4915–4922 (2002).

    CAS  PubMed  Google Scholar 

  55. Rank, G., Prestel, M. & Paro, R. Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol. Cell. Biol. 22, 8026–8034 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanchez-Elsner, T., Gou, D., Kremmer, E. & Sauer, F. Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311, 1118–1123 (2006).

    CAS  PubMed  Google Scholar 

  58. Petruk, S. et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127, 1209–1221 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    CAS  PubMed  Google Scholar 

  60. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    CAS  PubMed  Google Scholar 

  61. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maenner, S. et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 8, e1000276 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    CAS  PubMed  Google Scholar 

  64. Bernstein, E. et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26, 2560–2569 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by Polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010). This shows that CBX7 can independently bind to both methylated H3K27 and the non-coding RNA ANRIL . Loss of CBX7– ANRIL binding results in growth defects.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Messaoudi-Aubert, S. E. et al. Role for the MOV10 RNA helicase in Polycomb-mediated repression of the INK4a tumor suppressor. Nature struct. mol. biol. 17, 862–868 (2010).

    Google Scholar 

  67. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  68. Kanhere, A. et al. Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb Repressive Complex-2. Mol. Cell 38, 675–688 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010). This study shows that PRC2 and LSD1 associate with different sites of the non-coding RNA HOTAIR , which suggests that HOTAIR acts as assembly platform for chromatin modifiers.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    CAS  PubMed  Google Scholar 

  74. Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    CAS  PubMed  Google Scholar 

  76. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  Google Scholar 

  77. Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    CAS  PubMed  Google Scholar 

  78. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    CAS  PubMed  Google Scholar 

  79. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008).

    CAS  PubMed  Google Scholar 

  80. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009). References 79 and 80 demonstrate that PRC2 binds trimethylated H3K27, which suggests a self-reinforcing loop for the propagation of the methylation mark.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004).

    CAS  PubMed  Google Scholar 

  82. Platero, J. S., Hartnett, T. & Eissenberg, J. C. Functional analysis of the chromo domain of HP1. EMBO J. 14, 3977–3986 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Muller, J. & Verrijzer, P. Biochemical mechanisms of gene regulation by Polycomb group protein complexes. Curr. Opin. Genet. Dev. 19, 150–158 (2009).

    PubMed  Google Scholar 

  84. Simon, J. A. & Kingston, R. E. Mechanisms of Polycomb gene silencing: knowns and unknowns. Nature Rev. Mol. Cell Biol. 10, 697–708 (2009).

    CAS  Google Scholar 

  85. Beisel, C. et al. Comparing active and repressed expression states of genes controlled by the Polycomb/Trithorax group proteins. Proc. Natl Acad. Sci. USA 104, 16615–16620 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet. 38, 700–705 (2006).

    CAS  PubMed  Google Scholar 

  87. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hatano, A., Matsumoto, M., Higashinakagawa, T. & Nakayama, K. I. Phosphorylation of the chromodomain changes the binding specificity of Cbx2 for methylated histone H3. Biochem. Biophys. Res. Commun. 397, 93–99 (2010).

    CAS  PubMed  Google Scholar 

  89. Kang, X. et al. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol. Cell 38, 191–201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. LeRoy, G. et al. Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications. Mol. Cell Proteomics 8, 2432–2442 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Francis, N. J., Follmer, N. E., Simon, M. D., Aghia, G. & Butler, J. D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137, 110–122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, E. S., Zhang, K., Cam, H. P., Zofall, M. & Grewal, S. I. S. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734–737 (2008).

    CAS  PubMed  Google Scholar 

  94. Kloc, A., Zaratiegui, M., Nora, E. & Martienssen, R. RNA interference guides histone modification during the S phase of chromosomal replication. Curr. Biol. 18, 490–495 (2008). References 93 and 94 show that the transcription of centromeric repeats is reactivated in early S phase, which suggests a model for the propagation of heterochromatin.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Egli, D., Birkhoff, G. & Eggan, K. Mediators of reprogramming: transcription factors and transitions through mitosis. Nature Rev. Mol. Cell Biol. 9, 505–516 (2008).

    CAS  Google Scholar 

  96. Buchenau, P., Hodgson, J., Strutt, H. & Arndt-Jovin, D. J. The distribution of Polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J. Cell Biol. 141, 469–481 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    CAS  PubMed  Google Scholar 

  98. Voncken, J. W. et al. Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J. Cell Sci. 112, 4627–4639 (1999).

    CAS  PubMed  Google Scholar 

  99. Blobel, G. A. et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 36, 970–983 (2009). This study shows that MLL1 occupies genes in mitosis that are highly expressed during interphase in order to render them rapidly activatable on mitotic exit.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Guenther, M. G. et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl Acad. Sci. USA 102, 8603–8608 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu, B. D., Hanson, R. D., Hess, J. L., Horning, S. E. & Korsmeyer, S. J. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc. Natl Acad. Sci. USA 95, 10632–10636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).

    CAS  PubMed  Google Scholar 

  103. Klymenko, T. & Muller, J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep. 5, 373–377 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    CAS  PubMed  Google Scholar 

  105. Ficz, G., Heintzmann, R. & Arndt-Jovin, D. J. Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132, 3963–3976 (2005).

    CAS  PubMed  Google Scholar 

  106. Liu, Y. et al. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena . Genes Dev. 21, 1530–1545 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  108. Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nature Rev. Cancer 4, 143–153 (2004).

    CAS  Google Scholar 

  109. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    CAS  PubMed  Google Scholar 

  110. Bird, A. P. & Wolffe, A. P. Methylation-induced repression—belts, braces, and chromatin. Cell 99, 451–454 (1999).

    CAS  PubMed  Google Scholar 

  111. Voo, K. S., Carlone, D. L., Jacobsen, B. M., Flodin, A. & Skalnik, D. G. Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol. Cell. Biol. 20, 2108–2121 (2000).

    CAS  PubMed  Google Scholar 

  112. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation . Nature Genet. 20, 116–117 (1998).

    CAS  PubMed  Google Scholar 

  113. Antequera, F. & Bird, A. Number of CpG islands and genes in human and mouse. Proc. Natl Acad. Sci. USA 90, 11995–11999 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mohn, F. et al. Lineage-specific Polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    CAS  PubMed  Google Scholar 

  115. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    CAS  PubMed  Google Scholar 

  116. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet. 39, 232–236 (2007).

    CAS  PubMed  Google Scholar 

  117. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet. 39, 157–158 (2007).

    CAS  PubMed  Google Scholar 

  118. Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212–224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Laybourn, P. J. & Kadonaga, J. T. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254, 238–245 (1991).

    CAS  PubMed  Google Scholar 

  120. Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genet. 38, 1005–1014 (2006).

    CAS  PubMed  Google Scholar 

  121. Smith, M. B. & Weiler, K. S. Drosophila D1 overexpression induces ectopic pairing of polytene chromosomes and is deleterious to development. Chromosoma 119, 287–309 (2010).

    PubMed  Google Scholar 

  122. Zhimulev, I. F. et al. Influence of the SuUR gene on intercalary heterochromatin in Drosophila melanogaster polytene chromosomes. Chromosoma 111, 377–398 (2003).

    CAS  PubMed  Google Scholar 

  123. Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20, 1110–1122 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lagarou, A. et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22, 2799–2810 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    CAS  PubMed  Google Scholar 

  127. Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 26, 4078–4088 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Motamedi, M. R. et al. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol. Cell 32, 778–790 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    CAS  PubMed  Google Scholar 

  130. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002). This is the first work that links the RNAi machinery to heterochromatin formation in fission yeast.

    CAS  PubMed  Google Scholar 

  131. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    CAS  PubMed  Google Scholar 

  133. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genet. 21, 400–404 (1999).

    CAS  PubMed  Google Scholar 

  134. Lee, J. T. & Lu, N. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99, 47–57 (1999).

    CAS  PubMed  Google Scholar 

  135. Pasmant, E. et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 67, 3963–3969 (2007).

    CAS  PubMed  Google Scholar 

  136. Hirota, T., Lipp, J. J., Toh, B.-H. & Peters, J.-M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    CAS  PubMed  Google Scholar 

  137. Enderle, D. et al. Polycomb preferentially targets stalled promoters of coding and non-coding transcripts. Genome Res. 22 Dec 2010 (doi:10.1101/gr.114348.110).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Bühler, S. Nakhuri and R. Sawarkar for their critical reading of the manuscript. We apologize to authors whose studies could not be cited owing to space limitations. Work in the laboratory of R.P. is funded by the EU-NoE 'Epigenome', the Deutsche Forschungsgemeinschaft (DFG) and the Eidgenössische Technische Hochschule (ETH) Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Paro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage

Nature Reviews Genetics article series on Modes of transcriptional regulation

Glossary

Heterochromatin

The portion of the genome that stays highly condensed throughout the cell cycle. Compared with euchromatin, it replicates late in S phase and is relatively gene-poor. Molecularly, heterochromatin is characterized by DNA methylation, histone hypoacetylation, methylation of histone H3 at lysine 9 and the presence of heterochromatin protein 1 (HP1).

Histone

A family of small, highly conserved basic proteins, found in the chromatin of all eukaryotic cells. The core histones (H2A, H2B, H3 and H4) associate with DNA to form a nucleosome. The histone proteins are subject to various chemical modifications, including acetylation, methylation and phosphorylation.

Constitutive heterochromatin

A subtype of heterochromatin that is present at the highly repetitive DNA sequences found at the centromeres and telomeres of chromosomes, where it hinders transposable elements from becoming activated and thereby ensures genome stability and integrity.

Facultative heterochromatin

A subtype of heterochromatin that is formed in the euchromatic environment, where heterochromatin proteins are used to stably repress the activity of certain target genes.

Polycomb group

(PcG). A class of proteins — originally described in Drosophila melanogaster — that maintain the stable and heritable repression of several genes, including the homeotic genes.

Genomic imprinting

The epigenetic marking of a gene on the basis of parental origin, which results in monoallelic expression.

Poised promoter state

A promoter bound by the transcription-initiating form of RNA polymerase II while the gene is not being actively transcribed. Transcriptionally poised genes are suggested to be rapidly upregulated in, for example, developmental processes.

Mating type locus

A well-studied chromosome region that forms a model for epigenetic gene silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. The mating type locus controls the sexual identities of both haploid and diploid cells.

RNAi

(RNA interference). Cellular mechanism involved in gene silencing and 'protection' against retroviral and transposable element invasion. Regulated by proteins such as Dicer and Argonaute, which are responsible for the production of small interfering RNAs that target messenger RNAs for cleavage and that localize silencing factors to heterochromatic regions.

Small interfering RNA

(siRNA). A short, non-coding RNA (~22-nucleotides long) that is processed from longer double-stranded RNA by the RNAi machinery. Such non-coding RNAs confer target specificity to the silencing complexes in which they reside.

RNA-induced initiation of transcriptional gene silencing complex

(RITS complex). An RNAi effector complex required for heterochromatin assembly in fission yeast. It targets centromeric transcripts to induce both H3K9 methylation and small interfering RNA amplification.

Trithorax group

(TRXG). A class of proteins — originally identified as suppressors for mutations in PcG genes in Drosophila melanogaster — that maintain the stable and heritable active state of several genes, including the homeotic genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beisel, C., Paro, R. Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12, 123–135 (2011). https://doi.org/10.1038/nrg2932

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2932

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing