Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of regulatory variation in complex traits and disease

Key Points

  • DNA sequence variation that influences gene expression is an important source of variation in higher-order organismal traits.

  • Variants that influence transcription factor binding often affect multiple levels of chromatin organization and gene expression.

  • Genetic variation in protein levels is studied much less frequently than that in mRNA levels. Based on current knowledge, most loci that influence a given mRNA also seem to affect the abundance of the corresponding protein.

  • Model organisms show that the interplay between regulatory variation and higher-order traits can be highly complex.

  • Rapidly growing data sets and detailed functional follow-up studies show that regulatory variation contributes to disease risk in humans, sometimes in surprisingly complex ways.

Abstract

We are in a phase of unprecedented progress in identifying genetic loci that cause variation in traits ranging from growth and fitness in simple organisms to disease in humans. However, a mechanistic understanding of how these loci influence traits is lacking for the majority of loci. Studies of the genetics of gene expression have emerged as a key tool for linking DNA sequence variation to phenotypes. Here, we review recent insights into the molecular nature of regulatory variants and describe their influence on the transcriptome and the proteome. We discuss conceptual advances from studies in model organisms and present examples of complete chains of causality that link individual polymorphisms to changes in gene expression, which in turn result in physiological changes and, ultimately, disease risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Designs for genetic mapping of variation in gene expression and other molecular traits.
Figure 2: Key insights into the causal relationship between eQTLs and organismal traits provided by recent studies in yeast.
Figure 3: An example of a full chain of causality in humans.

Similar content being viewed by others

References

  1. Schwartz, D. Genetic studies on mutant enzymes in maize. III. Control of gene action in the synthesis of pH 7.5 esterase. Genetics 47, 1609–1615 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jansen, R. C. & Nap, J. P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    CAS  PubMed  Google Scholar 

  3. Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002). This is the first genome-wide eQTL study, carried out in a cross between two yeast strains.

    CAS  PubMed  Google Scholar 

  4. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003). This is the first eQTL study in mammals (mice and humans) and in maize.

    CAS  PubMed  Google Scholar 

  5. Damerval, C., Maurice, A., Josse, J. M. & de Vienne, D. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137, 289–301 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stranger, B. E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    PubMed  PubMed Central  Google Scholar 

  7. Stranger, B. E. et al. Population genomics of human gene expression. Nature Genet. 39, 1217–1224 (2007).

    CAS  PubMed  Google Scholar 

  8. Dimas, A. S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004). This is the first large eQTL study in human families.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    CAS  PubMed  Google Scholar 

  11. Cheung, V. G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369 (2005). References 7 and 11 are the first studies to use GWAS results to map eQTLs in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rockman, M. V. & Kruglyak, L. Genetics of global gene expression. Nature Rev. Genet. 7, 862–872 (2006). This review presents the conceptual basis of eQTLs and provides a comprehensive overview of the first 5 years of eQTL discovery.

    CAS  PubMed  Google Scholar 

  14. Kelly, S. A., Nehrenberg, D. L., Hua, K., Garland, T. & Pomp, D. Functional genomic architecture of predisposition to voluntary exercise in mice: expression QTL in the brain. Genetics 191, 643–654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Heyne, H. O. et al. Genetic influences on brain gene expression in rats selected for tameness and aggression. Genetics 198, 1277–1290 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Orozco, L. D. et al. Unraveling inflammatory responses using systems genetics and gene-environment interactions in macrophages. Cell 151, 658–670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genet. 37, 243–253 (2005).

    CAS  PubMed  Google Scholar 

  18. Aylor, D. L. et al. Genetic analysis of complex traits in the emerging collaborative cross. Genome Res. 21, 1213–1222 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genet. 37, 710–717 (2005).

    CAS  PubMed  Google Scholar 

  21. Massouras, A. et al. Genomic variation and its impact on gene expression in Drosophila melanogaster. PLoS Genet. 8, e1003055 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. King, E. G., Sanderson, B. J., McNeil, C. L., Long, A. D. & Macdonald, S. J. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity. PLoS Genet. 10, e1004322 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. West, M. A. et al. Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175, 1441–1450 (2006).

    PubMed  Google Scholar 

  24. Swanson-Wagner, R. A. et al. Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326, 1118–1120 (2009).

    CAS  PubMed  Google Scholar 

  25. Fu, J. et al. System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genet. 41, 166–167 (2009).

    CAS  PubMed  Google Scholar 

  26. Keurentjes, J. J. et al. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc. Natl Acad. Sci. 104, 1708–1713 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cubillos, F. A. et al. Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures. BMC Genomics 13, 117 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu, J. et al. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Commun. 4, 2832 (2013).

    Google Scholar 

  29. Holloway, B., Luck, S., Beatty, M., Rafalski, J. A. & Li, B. Genome-wide expression quantitative trait loci (eQTL) analysis in maize. BMC Genomics 12, 336 (2011).

    PubMed  PubMed Central  Google Scholar 

  30. Lowry, D. B. et al. Expression quantitative trait locus mapping across water availability environments reveals contrasting associations with genomic features in Arabidopsis. Plant Cell 25, 3266–3279 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rockman, M. V., Skrovanek, S. S. & Kruglyak, L. Selection at linked sites shapes heritable phenotypic variation in C. elegans. Science 330, 372–376 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y. et al. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet. 2, e222 (2006).

    PubMed  PubMed Central  Google Scholar 

  33. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genet. 35, 57–64 (2003).

    CAS  PubMed  Google Scholar 

  34. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Emerson, J. J. & Li, W. H. The genetic basis of evolutionary change in gene expression levels. Phil. Trans. R. Soc. B 365, 2581–2590 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Skelly, D. A., Ronald, J. & Akey, J. M. Inherited variation in gene expression. Annu. Rev. Genomics Hum. Genet. 10, 313–332 (2009).

    CAS  PubMed  Google Scholar 

  37. Battle, A. & Montgomery, S. B. Determining causality and consequence of expression quantitative trait loci. Hum. Genet. 133, 727–735 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dermitzakis, E. T. Cellular genomics for complex traits. Nature Rev. Genet. 13, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  39. Gaffney, D. J. Global properties and functional complexity of human gene regulatory variation. PLoS Genet. 9, e1003501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits. Nature Rev. Genet. 15, 34–48 (2014).

    CAS  PubMed  Google Scholar 

  41. Ronald, J., Brem, R. B., Whittle, J. & Kruglyak, L. Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet. 1, e25 (2005).

    PubMed  PubMed Central  Google Scholar 

  42. Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).

    CAS  PubMed  Google Scholar 

  43. Montgomery, S. B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010).

    CAS  PubMed  Google Scholar 

  44. Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768–772 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Doss, S., Schadt, E. E., Drake, T. A. & Lusis, A. J. Cis-acting expression quantitative trait loci in mice. Genome Res. 15, 681–691 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. Allelic variation in human gene expression. Science 297, 1143 (2002).

    CAS  PubMed  Google Scholar 

  47. Battle, A. et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 24, 14–24 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ronald, J. & Akey, J. M. The evolution of gene expression QTL in Saccharomyces cerevisiae. PLoS ONE 2, e678 (2007).

    PubMed  PubMed Central  Google Scholar 

  49. Göring, H. H. et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genet. 39, 1208–1216 (2007).

    PubMed  Google Scholar 

  50. Smith, E. N. & Kruglyak, L. Gene–environment interaction in yeast gene expression. PLoS Biol. 6, e83 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Clement-Ziza, M. et al. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast. Mol. Syst. Biol. 10, 764 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Langley, S. R. et al. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans. Cardiovasc. Res. 97, 653–665 (2013).

    CAS  PubMed  Google Scholar 

  53. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nature Genet. 37, 225–232 (2005).

    CAS  PubMed  Google Scholar 

  54. Chesler, E. J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genet. 37, 233–242 (2005).

    CAS  PubMed  Google Scholar 

  55. Zhu, J. et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genet. 40, 854–861 (2008).

    CAS  PubMed  Google Scholar 

  56. Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436, 701–703 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghazalpour, A. et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 7, e1001393 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Monks, S. A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Petretto, E. et al. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2, e172 (2006).

    PubMed  PubMed Central  Google Scholar 

  60. van Nas, A. et al. Expression quantitative trait loci: replication, tissue- and sex-specificity in mice. Genetics 185, 1059–1068 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Price, A. L. et al. Single-tissue and cross-tissue heritability of gene expression via identity-by-descent in related or unrelated individuals. PLoS Genet. 7, e1001317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nature Genet. 44, 1084–1089 (2012).

    CAS  PubMed  Google Scholar 

  63. Wright, F. A. et al. Heritability and genomics of gene expression in peripheral blood. Nature Genet. 46, 430–437 (2014).

    CAS  PubMed  Google Scholar 

  64. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010).

    CAS  PubMed  Google Scholar 

  65. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).

    Google Scholar 

  66. Fairfax, B. P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nature Genet. 44, 502–510 (2012).

    CAS  PubMed  Google Scholar 

  67. Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Rotival, M. et al. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans. PLoS Genet. 7, e1002367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Heinig, M. et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467, 460–464 (2010). This study reveals a physiologically important regulatory network in monocytes that is conserved between rats and humans, and that is affected by genetic variation in both species.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature Genet. 45, 1238–1243 (2013). With >5,000 samples, this meta-analysis is the largest human eQTL study so far. The authors use the large sample size to identify >100 trans -eQTLs.

    CAS  PubMed  Google Scholar 

  71. Fehrmann, R. S. et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bryois, J. et al. Cis and trans effects of human genomic variants on gene expression. PLoS Genet. 10, e1004461 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, M. N. et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343, 1246980 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. McDaniell, R. et al. Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328, 235–239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Reddy, T. E. et al. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res. 22, 860–869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Heinz, S. et al. Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding, Z. et al. Quantitative genetics of CTCF binding reveal local sequence effects and different modes of X-chromosome association. PLoS Genet. 10, e1004798 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, K. et al. Genetic landscape of open chromatin in yeast. PLoS Genet. 9, e1003229 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Heyn, H. et al. DNA methylation contributes to natural human variation. Genome Res. 23, 1363–1372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bell, J. T. et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 12, R10 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Banovich, N. E. et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 10, e1004663 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Gutierrez-Arcelus, M. et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2, e00523 (2013).

    PubMed  PubMed Central  Google Scholar 

  86. McRae, A. F. et al. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol. 15, R73 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Pickrell, J. K., Pai, A. A., Gilad, Y. & Pritchard, J. K. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 6, e1001236 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013). This is the first paper to integrate fully sequenced genomes with RNA sequencing-based transcriptomes in a large human population, which provides many important insights into the functional diversity of the genetics of the transcriptome.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hassan, M. A., Butty, V., Jensen, K. D. & Saeij, J. P. The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages. Genome Res. 24, 377–389 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Civelek, M. et al. Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Hum. Mol. Genet. 22, 3023–3037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Parts, L. et al. Extent, causes, and consequences of small RNA expression variation in human adipose tissue. PLoS Genet. 8, e1002704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Popadin, K., Gutierrez-Arcelus, M., Dermitzakis, E. T. & Antonarakis, S. E. Genetic and epigenetic regulation of human lincRNA gene expression. Am. J. Hum. Genet. 93, 1015–1026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kumar, V. et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet. 9, e1003201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pai, A. A. et al. The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. PLoS Genet. 8, e1003000 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Montgomery, S. B., Lappalainen, T., Gutierrez-Arcelus, M. & Dermitzakis, E. T. Rare and common regulatory variation in population-scale sequenced human genomes. PLoS Genet. 7, e1002144 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  97. McVicker, G. et al. Identification of genetic variants that affect histone modifications in human cells. Science 342, 747–749 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kilpinen, H. et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342, 744–747 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kasowski, M. et al. Extensive variation in chromatin states across humans. Science 342, 750–752 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010). This paper provides an example of how a regulatory sequence change leads to gene expression variation at a distant gene, which in turn influences cholesterol levels and the risk for myocardial infarction.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470, 264–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Emison, E. S. et al. Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am. J. Hum. Genet. 87, 60–74 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. De Gobbi, M. et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312, 1215–1217 (2006).

    CAS  PubMed  Google Scholar 

  104. Chang, J. et al. The molecular mechanism of a cis-regulatory adaptation in yeast. PLoS Genet. 9, e1003813 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, S.-I. et al. Learning a prior on regulatory potential from eQTL data. PLoS Genet. 5, e1000358 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Lewis, J. A., Broman, A. T., Will, J. & Gasch, A. P. Genetic architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains. Genetics 198, 369–382 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Bandiera, S. et al. Proteasomal degradation of human CYP1B1: effect of the Asn453Ser polymorphism on the post-translational regulation of CYP1B1 expression. Mol. Pharmacol. 67, 435–443 (2005).

    CAS  PubMed  Google Scholar 

  108. 't Hoen, P. A. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nature Biotech. 31, 1015–1022 (2013).

    CAS  Google Scholar 

  109. Melzer, D. et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 4, e1000072 (2008).

    PubMed  PubMed Central  Google Scholar 

  110. Garge, N. et al. Identification of quantitative trait loci underlying proteome variation in human lymphoblastoid cells. Mol. Cell. Proteomics 9, 1383–1399 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hause, R. J. et al. Identification and validation of genetic variants that influence transcription factor and cell signaling protein levels. Am. J. Hum. Genet. 95, 194–208 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Battle, A. et al. Impact of regulatory variation from RNA to protein. Science 347, 664–667 (2015). This is the first paper to present an integrated analysis of the genetics of mRNA levels, translation and protein abundance in humans.

    CAS  PubMed  Google Scholar 

  113. Picotti, P. et al. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494, 266–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lourdusamy, A. et al. Identification of cis-regulatory variation influencing protein abundance levels in human plasma. Hum. Mol. Genet. 21, 3719–3726 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Holdt, L. M. et al. Quantitative trait loci mapping of the mouse plasma proteome (pQTL). Genetics 193, 601–608 (2012).

    PubMed  Google Scholar 

  116. Johansson, Å. et al. Identification of genetic variants influencing the human plasma proteome. Proc. Natl Acad. Sci. 110, 4673–4678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wu, L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Skelly, D. A. et al. Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res. 23, 1496–1504 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Foss, E. J. et al. Genetic basis of proteome variation in yeast. Nature Genet. 39, 1369–1375 (2007).

    CAS  PubMed  Google Scholar 

  120. Foss, E. J. et al. Genetic variation shapes protein networks mainly through non-transcriptional mechanisms. PLoS Biol. 9, e1001144 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Albert, F. W., Treusch, S., Shockley, A. H., Bloom, J. S. & Kruglyak, L. Genetics of single-cell protein abundance variation in large yeast populations. Nature 506, 494–497 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Parts, L. et al. Heritability and genetic basis of protein level variation in an outbred population. Genome Res. 24, 1363–1370 (2014). References 121 and 122 pioneer the use of pools of hundreds of thousands of yeast cells to identify pQTLs and provide important insights into the genetics of protein versus mRNA levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    PubMed  Google Scholar 

  124. Li, J. J., Bickel, P. J. & Biggin, M. D. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, e270 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Albert, F. W., Muzzey, D., Weissman, J. S. & Kruglyak, L. Genetic influences on translation in yeast. PLoS Genet. 10, e1004692 (2014).

    PubMed  PubMed Central  Google Scholar 

  127. Muzzey, D., Sherlock, G. & Weissman, J. S. Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res. 24, 963–973 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pomerantz, M. M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nature Genet. 41, 882–884 (2009).

    CAS  PubMed  Google Scholar 

  129. Sur, I. K. et al. Mice lacking a MYC enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science 338, 1360–1363 (2012).

    CAS  PubMed  Google Scholar 

  130. Villar, D., Flicek, P. & Odom, D. T. Evolution of transcription factor binding in metazoans — mechanisms and functional implications. Nature Rev. Genet. 15, 221–233 (2014).

    CAS  PubMed  Google Scholar 

  131. Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A. & Kingsley, D. M. A molecular basis for classic blond hair color in Europeans. Nature Genet. 46, 748–752 (2014). This study uses transgenic mice to show that a genetic change in a human regulatory element contributes to blond hair.

    CAS  PubMed  Google Scholar 

  132. Wang, Y., Shirogane, T., Liu, D., Harper, J. W. & Elledge, S. J. Exit from exit: resetting the cell cycle through Amn1 inhibition of G protein signaling. Cell 112, 697–709 (2003).

    CAS  PubMed  Google Scholar 

  133. Doolin, M. T., Johnson, A. L., Johnston, L. H. & Butler, G. Overlapping and distinct roles of the duplicated yeast transcription factors Ace2p and Swi5p. Mol. Microbiol. 40, 422–432 (2001).

    CAS  PubMed  Google Scholar 

  134. Kuranda, M. J. & Robbins, P. W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266, 19758–19767 (1991).

    CAS  PubMed  Google Scholar 

  135. Rest, J. S. et al. Nonlinear fitness consequences of variation in expression level of a eukaryotic gene. Mol. Biol. Evol. 30, 448–456 (2013).

    CAS  PubMed  Google Scholar 

  136. Gagneur, J. et al. Genotype–environment interactions reveal causal pathways that mediate genetic effects on phenotype. PLoS Genet. 9, e1003803 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sudarsanam, P. & Cohen, B. A. Single nucleotide variants in transcription factors associate more tightly with phenotype than with gene expression. PLoS Genet. 10, e1004325 (2014). References 135–137 are examples of how the powerful experimental tools in yeast provide conceptual insights into the relationship between eQTLs and higher-order phenotypes.

    PubMed  PubMed Central  Google Scholar 

  138. Gerke, J., Lorenz, K. & Cohen, B. Genetic interactions between transcription factors cause natural variation in yeast. Science 323, 498–501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014). This study uses elegant whole-genome methods to estimate the relative contribution of functional genomic annotations to the heritability of several human traits and shows that by far the largest fraction is due to variants in putative regulatory elements.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nica, A. C. et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 6, e1000895 (2010).

    PubMed  PubMed Central  Google Scholar 

  142. Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

    PubMed  PubMed Central  Google Scholar 

  143. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  144. Torres, J. M. et al. Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait. Am. J. Hum. Genet. 95, 521–534 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kapoor, A. et al. An enhancer polymorphism at the cardiomyocyte intercalated disc protein NOS1AP locus is a major regulator of the QT interval. Am. J. Hum. Genet. 94, 854–869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lonsdale, J. et al. The Genotype–Tissue Expression (GTEx) project. Nature Genet. 45, 580–585 (2013).

    CAS  Google Scholar 

  147. Almlöf, J. C. et al. Powerful identification of cis-regulatory SNPs in human primary monocytes using allele-specific gene expression. PLoS ONE 7, e52260 (2012).

    PubMed  PubMed Central  Google Scholar 

  148. Zeller, T. et al. Genetics and beyond — the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5, e10693 (2010).

    PubMed  PubMed Central  Google Scholar 

  149. Adoue, V. et al. Allelic expression mapping across cellular lineages to establish impact of non-coding SNPs. Mol. Syst. Biol. 10, 754 (2014).

    PubMed  Google Scholar 

  150. Ye, C. J. et al. Intersection of population variation and autoimmunity genetics in human T cell activation. Science 345, 1254665 (2014). References 16, 67, 74 and 150 detect previously hidden eQTLs in purified populations of primary immune cells once they are stimulated with triggers of the immune response.

    PubMed  PubMed Central  Google Scholar 

  151. Ferraro, A. et al. Interindividual variation in human T regulatory cells. Proc. Natl Acad. Sci. 111, E1111–E1120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ackermann, M., Sikora-Wohlfeld, W. & Beyer, A. Impact of natural genetic variation on gene expression dynamics. PLoS Genet. 9, e1003514 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gerrits, A. et al. Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet. 5, e1000692 (2009).

    PubMed  PubMed Central  Google Scholar 

  154. Robinton, D. A. & Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Rouhani, F. et al. Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet. 10, e1004432 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Kim, S. et al. Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nature Commun. 5, 5236 (2014).

    CAS  Google Scholar 

  157. Barreiro, L. B. et al. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. 109, 1204–1209 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Fairfax, B. P. & Knight, J. C. Genetics of gene expression in immunity to infection. Curr. Opin. Immunol. 30, 63–71 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Franco, L. M. et al. Integrative genomic analysis of the human immune response to influenza vaccination. eLife 2, e00299 (2013).

    PubMed  PubMed Central  Google Scholar 

  160. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease associations with regulatory information in the human genome. Genome Res. 22, 1748–1759 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature http://dx.doi.org/10.1038/nature13835 (2014).

  162. Schork, A. J. et al. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS Genet. 9, e1003449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nature Genet. 45, 124–130 (2012).

    PubMed  Google Scholar 

  164. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. Gagliano, S. A., Barnes, M. R., Weale, M. E. & Knight, J. A. Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization. PLoS ONE 9, e98122 (2014). References 164–166 are examples of the formal integration of functional genomic information and genetic variation.

    PubMed  PubMed Central  Google Scholar 

  167. Chung, D., Yang, C., Li, C., Gelernter, J. & Zhao, H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet. 10, e1004787 (2014).

    PubMed  PubMed Central  Google Scholar 

  168. Knight, J., Barnes, M. R., Breen, G. & Weale, M. E. Using functional annotation for the empirical determination of Bayes factors for genome-wide association study analysis. PLoS ONE 6, e14808 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gaffney, D. J. et al. Dissecting the regulatory architecture of gene expression QTLs. Genome Biol. 13, R7 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Brown, C. D., Mangravite, L. M. & Engelhardt, B. E. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet. 9, e1003649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Flutre, T., Wen, X., Pritchard, J. & Stephens, M. A. Statistical framework for joint eQTL analysis in multiple tissues. PLoS Genet. 9, e1003486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Manor, O. & Segal, E. Robust prediction of expression differences among human individuals using only genotype information. PLoS Genet. 9, e1003396 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Johansson, M. et al. Using prior information from the medical literature in GWAS of oral cancer identifies novel susceptibility variant on chromosome 4 — the AdAPT method. PLoS ONE 7, e36888 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    PubMed  PubMed Central  Google Scholar 

  175. Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    CAS  PubMed  Google Scholar 

  176. Small, K. S. et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nature Genet. 43, 561–564 (2011).

    CAS  PubMed  Google Scholar 

  177. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nature Rev. Genet. 10, 184–194 (2009).

    CAS  PubMed  Google Scholar 

  178. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Fischer, J. et al. Inactivation of the Fto gene protects from obesity. Nature 458, 894–898 (2009).

    CAS  PubMed  Google Scholar 

  180. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature Genet. 38, 1341–1347 (2006).

    CAS  PubMed  Google Scholar 

  182. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C). Nature Genet. 38, 1348–1354 (2006).

    CAS  PubMed  Google Scholar 

  183. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Dryden, N. H. et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by capture Hi-C. Genome Res. 24, 1854–1868 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  186. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Sterneckert, J. L., Reinhardt, P. & Schöler, H. R. Investigating human disease using stem cell models. Nature Rev. Genet. 15, 625–639 (2014).

    CAS  PubMed  Google Scholar 

  188. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Brem, R. B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl Acad. Sci. 102, 1572–1577 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Hemani, G. et al. Detection and replication of epistasis influencing transcription in humans. Nature 508, 249–253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Brown, A. A. et al. Genetic interactions affecting human gene expression identified by variance association mapping. eLife 3, e01381 (2014).

    PubMed  PubMed Central  Google Scholar 

  193. Wood, A. R. et al. Another explanation for apparent epistasis. Nature 514, E3–E5 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Buil, A. et al. Gene–gene and gene–environment interactions detected by transcriptome sequence analysis in twins. Nature Genet. 47, 88–91 (2015).

    CAS  PubMed  Google Scholar 

  195. Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 4, e1000008 (2008).

    PubMed  PubMed Central  Google Scholar 

  196. Maki-Tanila, A. & Hill, W. G. Influence of gene interaction on complex trait variation with multilocus models. Genetics 198, 355–367 (2014).

    PubMed  PubMed Central  Google Scholar 

  197. Mangravite, L. M. et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature 502, 377–380 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Sander, J. D. & Joung, J. K. CRISPR–Cas systems for editing, regulating and targeting genomes. Nature Biotech. 32, 347–355 (2014).

    CAS  Google Scholar 

  200. Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Rev. Genet. 11, 733–739 (2010).

    CAS  PubMed  Google Scholar 

  201. Akey, J. M., Biswas, S., Leek, J. T. & Storey, J. D. On the design and analysis of gene expression studies in human populations. Nature Genet. 39, 807–808 (2007).

    CAS  PubMed  Google Scholar 

  202. Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, e161 (2007).

    PubMed Central  Google Scholar 

  203. Stegle, O., Parts, L., Durbin, R. & Winn, J. A. Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput. Biol. 6, e1000770 (2010).

    PubMed  PubMed Central  Google Scholar 

  204. Goldinger, A. et al. Genetic and nongenetic variation revealed for the principal components of human gene expression. Genetics 195, 1117–1128 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Fusi, N., Stegle, O. & Lawrence, N. D. Joint modelling of confounding factors and prominent genetic regulators provides increased accuracy in genetical genomics studies. PLoS Comput. Biol. 8, e1002330 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nature Protoc. 7, 500–507 (2012).

    CAS  Google Scholar 

  207. Listgarten, J., Kadie, C., Schadt, E. E. & Heckerman, D. Correction for hidden confounders in the genetic analysis of gene expression. Proc. Natl Acad. Sci. 107, 16465–16470 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Kang, H. M., Ye, C. & Eskin, E. Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots. Genetics 180, 1909–1925 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Gao, C. et al. HEFT: eQTL analysis of many thousands of expressed genes while simultaneously controlling for hidden factors. Bioinformatics 30, 369–376 (2014).

    CAS  PubMed  Google Scholar 

  210. Yang, C., Wang, L., Zhang, S. & Zhao, H. Accounting for non-genetic factors by low-rank representation and sparse regression for eQTL mapping. Bioinformatics 29, 1026–1034 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Mostafavi, S. et al. Normalizing RNA-sequencing data by modeling hidden covariates with prior knowledge. PLoS ONE 8, e68141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Parts, L., Stegle, O., Winn, J. & Durbin, R. Joint genetic analysis of gene expression data with inferred cellular phenotypes. PLoS Genet. 7, e1001276 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Lee, E. & Bussemaker, H. J. Identifying the genetic determinants of transcription factor activity. Mol. Syst. Biol. 6, 412 (2010).

    PubMed  PubMed Central  Google Scholar 

  214. Fazlollahi, M. et al. Harnessing natural sequence variation to dissect posttranscriptional regulatory networks in yeast. G3 (Bethesda) 4, 1539–1553 (2014).

    CAS  Google Scholar 

  215. Francesconi, M. & Lehner, B. The effects of genetic variation on gene expression dynamics during development. Nature 505, 208–211 (2013).

    PubMed  Google Scholar 

  216. Powell, J. E. et al. The Brisbane Systems Genetics Study: genetical genomics meets complex trait genetics. PLoS ONE 7, e35430 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Grundberg, E. et al. Global analysis of the impact of environmental perturbation on cis-regulation of gene expression. PLoS Genet. 7, e1001279 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Ramasamy, A. et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nature Neurosci. 17, 1418–1428 (2014).

    CAS  PubMed  Google Scholar 

  219. Zou, F. et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet. 8, e1002707 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Gibbs, J. R. et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010).

    PubMed  PubMed Central  Google Scholar 

  222. Koopmann, T. T. et al. Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart. PLoS ONE 9, e97380 (2014).

    PubMed  PubMed Central  Google Scholar 

  223. Innocenti, F. et al. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet. 7, e1002078 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Schadt, E. E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    PubMed  PubMed Central  Google Scholar 

  225. Hao, K. et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet. 8, e1003029 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Ongen, H. et al. Putative cis-regulatory drivers in colorectal cancer. Nature 512, 87–90 (2014).

    CAS  PubMed  Google Scholar 

  227. Li, Q. et al. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. Hum. Mol. Genet. 23, 5294–5302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Li, Q. et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152, 633–641 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of L.K.'s laboratory and many colleagues for discussions. L.K. is supported by funds from the Howard Hughes Medical Institute, the US National Institutes of Health and the James S. McDonnell Foundation. F.W.A. was supported by the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank W. Albert or Leonid Kruglyak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Expression quantitative trait loci

(eQTLs). Genomic regions that carry one or more DNA sequence variants that influence the expression level (typically mRNA abundance) of a given gene.

Recombinant offspring

Offspring of sexually reproducing organisms that carry a random combination of the alleles that they have inherited from their parents.

Protein QTLs

(pQTLs). Genomic regions that carry one or more DNA sequence variants that influence the protein abundance of a given gene.

eQTL hot spots

Regions of the genome that contain more expression quantitative trait loci (eQTLs) than expected by chance.

Organismal phenotypes

Traits that are detectable at the level of the whole organism, such as shape, size, colour, growth rate or the risk of developing a certain disease.

Linkage disequilibrium

The phenomenon whereby specific allele combinations occur more frequently than expected by chance, typically because they are physically close to each other on the same chromosome.

QTLs

Genomic regions that carry one or several DNA sequence variants which influence a continuously variable trait of interest.

Homologous

Pertaining to the two copies of the same chromosome that were inherited from the mother and the father in diploid organisms (such as humans).

RNA sequencing

A method to determine the sequence of RNA molecules in a biological sample. By counting the RNA molecules that were transcribed from each gene, RNA sequencing can be used to quantify mRNA expression levels.

Genetic distance

A measure of how often two sites in a genome are separated during meiosis. Genetic distance is correlated with physical distance but can differ quantitatively because of variation in recombination rate along a chromosome.

Linkage blocks

Continuous haplotypes that are not broken up in the population under study such that sequence variants within them all show the same patterns of association with a certain trait of interest.

Haplotypes

Stretches of DNA that carry certain combinations of alleles at two or more DNA variants.

Variance

A statistical measure of the variability of a trait in a population.

Heritability

The fraction of variance in a trait that is due to genetic differences among the individuals in a population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, F., Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat Rev Genet 16, 197–212 (2015). https://doi.org/10.1038/nrg3891

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing