Key Points
-
Many proteins that interact with highly structured RNA contain double-stranded RNA-binding motifs (dsRBMs). Well-known examples include the nucleases RNase III and Dicer, the protein kinase PKR, RNA deaminases (ADARs) and Staufen, a protein that is responsible for mRNA localization.
-
The dsRBM adopts an α–β–β–β–α topology structure with conserved residues at critical locations, particularly in the C-terminal third of the motif. Three regions of the dsRBM are involved in contacting A-form RNA along one face of the helix without wrapping around it.
-
The dsRBM interacts with the RNA duplex without obvious sequence specificity. However, several dsRBM proteins show a high degree of substrate specificity that can be of great biological significance.
-
The dsRBM is associated with ∼20 other protein domains in proteins from all eukaryotes, most eubacteria, several viruses and one Archaeon. Evolutionarily advanced organisms have a greater number of dsRBM proteins than lower species.
-
When there are several dsRBMs in a single protein, cooperation between them can achieve a higher affinity to RNAs, and some dsRBMs can adopt activities other than dsRNA binding, for example, protein–protein interactions.
-
dsRBM proteins are involved in a myriad of cellular functions, from RNA interference to antiviral mechanisms and other types of post-transcriptional gene regulation. Duplexed RNAs can be substrates, modulators or cargos for dsRBM proteins. There are extensive interactions between dsRBM proteins. Some are involved in the same cellular pathway, such as the interferon response and RNA interference, whereas some seem to modulate the functions of others.
Abstract
RNA duplexes have been catapulted into the spotlight by the discovery of RNA interference and related phenomena. But double-stranded and highly structured RNAs have long been recognized as key players in cell processes ranging from RNA maturation and localization to the antiviral response in higher organisms. Penetrating insights into the metabolism and functions of such RNAs have come from the identification and study of proteins that contain the double-stranded-RNA-binding motif.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Accession codes
References
Burkard, M. E., Turner, D. H. & Tinoco, I. Jr in The RNA World (ed. Atkins, J. F.) 675–685 (Cold Spring Harbor Laboratory Press, New York, USA, 1999).
Leontis, N. B., Stombaugh, J. & Westhof, E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).
Draper, D. E. Protein–RNA recognition. Annu. Rev. Biochem. 64, 593–620 (1995).
Nagai, K. RNA–protein interactions. Curr. Opin. Struct. Biol. 2, 131–137 (1992).
Varani, G. RNA–protein intermolecular recognition. Acc. Chem. Res. 30, 189–195 (1997).
Draper, D. E. Themes in RNA–protein recognition. J. Mol. Biol. 293, 255–270 (1999).
Perez-Canadillas, J. M. & Varani, G. Recent advances in RNA–protein recognition. Curr. Opin. Struct. Biol. 11, 53–58 (2001).
Hall, K. B. RNA–protein interactions. Curr. Opin. Struct. Biol. 12, 283–288 (2002).
Burd, C. G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).
Nagai, K. RNA–protein complexes. Curr. Opin. Struct. Biol. 6, 53–61 (1996).
Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4Å resolution. Science 289, 905–920 (2000).
Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).
Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5Å resolution. Science 292, 883–896 (2001).
Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).
St Johnston, D., Brown, N. H., Gall, J. G. & Jantsch, M. A conserved double-stranded RNA-binding domain. Proc. Natl Acad. Sci. USA 89, 10979–10983 (1992). Describes the first biochemical identification and sequence alignment of the double-stranded-RNA-binding motif.
McCormack, S. J., Thomis, D. C. & Samuel, C. E. Mechanism of interferon action: identification of a RNA binding domain within the N-terminal region of the human RNA-dependent P1/eIF-2α protein kinase. Virology 188, 47–56 (1992).
Green, S. R. & Mathews, M. B. Two RNA binding motifs in the double-stranded RNA activated protein kinase, DAI. Genes Dev. 6, 2478–2490 (1992).
Kharrat, A., Macias, M. J., Gibson, T. J., Nilges, M. & Pastore, A. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J. 14, 3572–3584 (1995).
Bycroft, M., Grünert, S., Murzin, A. G., Proctor, M. & St Johnston, D. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 14, 3563–3571 (1995). References 18 and 19 are two back-to-back papers that first characterized the structure of the dsRBM.
Ramos, A. et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 19, 997–1009 (2000).
Nanduri, S., Carpick, B. W., Yang, Y., Williams, B. R. & Qin, J. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 17, 5458–5465 (1998).
Wu, H., Henras, A., Chanfreau, G. & Feigon, J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl Acad. Sci. USA. 101, 8307–8312 (2004).
Ryter, J. M. & Schultz, S. C. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 17, 7505–7513 (1998). Atomic-level description of interactions of the dsRBM with RNA.
Blaszczyk, J. et al. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure 12, 457–466 (2004).
Manche, L., Green, S. R., Schmedt, C. & Mathews, M. B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12, 5238–5248 (1992). Defines the dsRNA-length dependence for PKR binding and activation.
Bevilacqua, P. C. & Cech, T. R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35, 9983–9994 (1996).
Hung, M. L., Chao, P. & Chang, K. Y. dsRBM1 and a proline-rich domain of RNA helicase A can form a composite binder to recognize a specific dsDNA. Nucleic Acids Res. 31, 5741–5753 (2003).
Williamson, J. R. Induced fit in RNA-protein recognition. Nature Struct. Biol. 7, 834–837 (2000).
Leulliot, N. & Varani, G. Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956 (2001).
Kebbekus, P., Draper, D. E. & Hagerman, P. Persistence length of RNA. Biochemistry 34, 4354–4357 (1995).
Auffinger, P. & Westhof, E. Water and ion binding around r(UpA)12 and d(TpA)12 oligomers — comparison with RNA and DNA (CpG)12 duplexes. J. Mol. Biol. 305, 1057–1072 (2001).
Bevilacqua, P. C., George, C. X., Samuel, C. E. & Cech, T. R. Binding of the protein kinase PKR to RNAs with secondary structure defects: role of the tandem A–G mismatch and noncontiguous helixes. Biochemistry 37, 6303–6316 (1998). Describes the isolation, through an in vitro selection technique, of a family of structured RNAs that can interact with the dsRBMs of PKR.
Clarke, P. A., Sharp, N. A. & Clemens, M. J. Translational control by the Epstein-Barr virus small RNA EBER-1. Eur. J. Biochem. 193, 635–641 (1990).
Vuyisich, M., Spanggord, R. J. & Beal, P. A. The binding site of the RNA-dependent protein kinase (PKR) on EBER1 RNA from Epstein-Barr virus. EMBO Rep. 3, 622–627 (2002).
Tian, B. et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded-RNA-dependent protein kinase PKR. RNA 6, 79–87 (2000).
Ma, Y. & Mathews, M. B. Secondary and tertiary structure in the central domain of adenovirus type 2 VA RNA I. RNA 2, 937–951 (1996).
Ben-Asouli, Y., Banai, Y., Pel-Or, Y., Shir, A. & Kaempfer, R. Human interferon-γ mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108, 221–232 (2002).
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).
Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).
Zheng, X. & Bevilacqua, P. C. Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR. Proc. Natl Acad. Sci. USA 97, 14162–14167 (2000).
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).
Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).
Calin-Jageman, I. & Nicholson, A. W. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III. Nucleic Acids Res. 31, 2381–2392 (2003).
Zhang, K. & Nicholson, A. W. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc. Natl Acad. Sci. USA 94, 13437–13441 (1997).
Castrignano, T., Chillemi, G., Varani, G. & Desideri, A. Molecular dynamics simulation of the RNA complex of a double-stranded RNA-binding domain reveals dynamic features of the intermolecular interface and its hydration. Biophys. J. 83, 3542–3552 (2002).
Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000). Shows that the ADAR2 knockout causes a lethal phenotype in mice because of defective editing of a specific ion-channel mRNA.
Ferrandon, D., Elphick, L., Nusslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221–1232 (1994).
Nagel, R. & Ares, M. Jr Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5′-AGNN-3′ tetraloop. RNA 6, 1142–1156 (2000).
Balachandran, S. et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13, 129–141 (2000).
Plasterk, R. H. RNA silencing: the genome's immune system. Science 296, 1263–1265 (2002).
Zamore, P. D. Ancient pathways programmed by small RNAs. Science 296, 1265–1269 (2002).
Lamontagne, B. & Elela, S. A. Evaluation of the RNA determinants for bacterial and yeast RNase III binding and cleavage. J. Biol. Chem. 279, 2231–2241 (2004).
Saunders, L. R. & Barber, G. N. The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J. 17, 961–983 (2003).
Tian, B. & Mathews, M. B. Phylogenetics and functions of the double-stranded RNA-binding motif: a genomic survey. Prog. Nucleic Acid Res. Mol. Biol. 74, 123–158 (2003). Survey of the genomes of organisms from several important taxa for dsRBM-containing proteins using a bioinformatics approach.
Nicholson, A. W. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol. Rev. 23, 371–390 (1999).
Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol. 11, 214–218 (2004).
Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).
Sun, W., Jun, E. & Nicholson, A. W. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain. Biochemistry 40, 14976–14984 (2001).
Aphasizhev, R. et al. Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria. EMBO J. 22, 913–924 (2003).
Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4, 453–461 (2002).
Tian, B. & Mathews, M. B. Functional characterization of and cooperation between the double-stranded RNA-binding motifs of the protein kinase PKR. J. Biol. Chem. 276, 9936–9944 (2001).
Patel, R. C. & Sen, G. C. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 17, 4379–4390 (1998). Describes the dsRBM-containing protein PACT, which binds and activates another dsRBM-containing protein, PKR.
Peters, G. A., Hartmann, R., Qin, J. & Sen, G. C. Modular structure of PACT: distinct domains for binding and activating PKR. Mol. Cell. Biol. 21, 1908–1920 (2001).
Micklem, D. R., Adams, J., Grunert, S. & St Johnston, D. Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 19, 1366–1377 (2000). Exploration of the biological and biochemical roles of the Staufen dsRBMs.
Zamore, P. D. Thirty-three years later, a glimpse at the ribonuclease III active site. Mol. Cell 8, 1158–1160 (2001).
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001). Shows the role of Dicer in RNAi.
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).
Filippov, V., Solovyev, V., Filippova, M. & Gill, S. S. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221 (2000).
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425 415–419 (2003).
Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).
Tabara, H., Yigit, E., Siomi, H. & Mello, C. C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861–871 (2002). References 72 and 73 show that the dsRBM-containing proteins R2D2 and RDE-4 function in RNAi.
Samuel, C. E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).
Keegan, L. P., Leroy, A., Sproul, D. & O'Connell, M. A. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol. 5, 209 (2004).
Kaufman, R. J. in Translational Control of Gene Expression (ed. Mathews, M. B.) 503–528 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).
Williams, B. R. Signal integration via PKR. Sci. STKE 2001, RE2 (2001).
Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotechnol. 22, 1001–1005 (2004).
Rubin, C. M., Kimura, R. H. & Schmid, C. W. Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res. 30, 3253–3261 (2002).
Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).
Adelman, Z. N. et al. RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J. Virol. 76, 12925–12933 (2002).
Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl Acad. Sci. USA 100, 6347–6352 (2003).
Chi, J. T. et al. Genomewide view of gene silencing by small interfering RNAs. Proc. Natl Acad. Sci. USA 100, 6343–6346 (2003).
Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genet. 34, 263–264 (2003).
Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).
Persengiev, S. P., Zhu, X. & Green, M. R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004).
Davies, M. V., Chang, H. W., Jacobs, B. L. & Kaufman, R. J. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol. 67, 1688–1692 (1993).
Kim, Y. G., Lowenhaupt, K., Oh, D. B., Kim, K. K. & Rich, A. Evidence that vaccinia virulence factor E3L binds to Z–DNA in vivo: Implications for development of a therapy for poxvirus infection. Proc. Natl Acad. Sci. USA 101, 1514–1518 (2004).
Tonkin, L. A. & Bass, B. L. Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302, 1725 (2003).
Scadden, A. D. & Smith, C. W. RNAi is antagonized by A→I hyper-editing. EMBO Rep. 2, 1107–1111 (2001).
Reichman, T. W., Muniz, L. C. & Mathews, M. B. The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol. Cell. Biol. 22, 343–356 (2002).
Reichman, T. W. & Mathews, M. B. in Handbook of Cell Signaling Vol. 3 (eds Bradshaw, R. A. & Dennis, E. A.) 335–342 (Academic Press, San Diego, USA, 2003)
Sun, C. T. et al. Transcription repression of human hepatitis B virus genes by negative regulatory element-binding protein/SON. J. Biol. Chem. 276, 24059–24067 (2001).
Nourbakhsh, M. & Hauser, H. Constitutive silencing of IFN-β promoter is mediated by NRF (NF-κB-repressing factor), a nuclear inhibitor of NF-κB. EMBO J. 18, 6415–6425 (1999).
Zhou, K. et al. RNA helicase A interacts with dsDNA and topoisomerase IIα. Nucleic Acids Res. 31, 2253–2260 (2003).
St Johnston, D., Beuchle, D. & Nusslein-Volhard, C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991).
Dubnau, J. et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 13, 286–296 (2003).
Mallardo, M. et al. Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc. Natl Acad. Sci. USA 100, 2100–2105 (2003).
Desterro, J. M. et al. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 116, 1805–1818 (2003).
Sansam, C. L., Wells, K. S. & Emeson, R. B. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc. Natl Acad. Sci. USA 100, 14018–14023 (2003).
Kostura, M. & Mathews, M. B. Purification and activation of the double-stranded RNA-dependent eIF-2 kinase DAI. Mol. Cell. Biol. 9, 1576–1586 (1989).
Liao, H. J., Kobayashi, R. & Mathews, M. B. Activities of adenovirus virus-associated RNAs: purification and characterization of RNA binding proteins. Proc. Natl. Acad. Sci. USA 95, 8514–8519 (1998).
Eckmann, C. R. & Jantsch, M. F. Xlrbpa, a double-stranded RNA-binding protein associated with ribosomes and heterogeneous nuclear RNPs. J. Cell Biol. 138, 239–253 (1997).
Eckmann, C. R., Neunteufl, A., Pfaffstetter, L. & Jantsch, M. F. The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell 12, 1911–1924 (2001).
Shim, J., Lim, H., Yates, J. R. & Karin, M. Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol. Cell 10, 1331–1344 (2002).
Poulsen, H., Nilsson, J., Damgaard, C. K., Egebjerg, J. & Kjems, J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell. Biol. 21, 7862–7771 (2001).
Nie, Y., Zhao, Q., Su, Y. & Yang, J. H. Subcellular distribution of ADAR1 isoforms is synergistically determined by three nuclear discrimination signals and a regulatory motif. J. Biol. Chem. 279, 13249–13255 (2004).
Brownawell, A. M. & Macara, I. G. Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J. Cell Biol. 156, 53–64 (2002). Shows that the nuclear export protein exportin 5 interacts with dsRBMs from several proteins.
Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).
Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).
Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).
Bohnsack, M. T. et al. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 21, 6205–6215 (2002).
Macchi, P. et al. The brain-specific double-stranded RNA-binding protein Staufen2: nucleolar accumulation and isoform-specific exportin-5-dependent export. J. Biol. Chem. 279, 31440–31444 (2004).
Hitti, E., Neunteufl, A. & Jantsch, M. F. The double-stranded RNA-binding protein X1rbpa promotes RNA strand annealing. Nucleic Acids Res. 26, 4382–4388 (1998).
Jammi, N. V. & Beal, P. A. Phosphorylation of the RNA-dependent protein kinase regulates its RNA-binding activity. Nucleic Acids Res. 29, 3020–3029 (2001).
Saenger, W. Principles of Nucleic Acid Structure (ed. Cantor, C. R.) (Springer, New York, 1984).
Weeks, K. M. & Crothers, D. M. Major groove accessibility of RNA. Science 261, 1574–1577 (1993).
Seeman, N. C., Rosenberg, J. M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA. 73, 804–808 (1976).
Kielkopf, C. L. et al. A structural basis for recognition of A·T and T·A base pairs in the minor groove of B-DNA. Science 282, 111–115 (1998).
Kool, E. T. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 30, 1–22 (2001).
Novina, C. D. & Sharp, P. A. The RNAi revolution. Nature 430, 161–164 (2004).
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
Ullu, E., Tschudi, C. & Chakraborty, T. RNA interference in protozoan parasites. Cell. Microbiol. 6, 509–519 (2004).
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
Turner, D. H. Thermodynamics of base pairing. Curr. Opin. Struct. Biol. 6, 299–304 (1996).
Brion, P. & Westhof, E. Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 26, 113–137 (1997).
Tinoco, I. Jr & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).
Schuster–Bockler, B., Schultz, J. & Rahmann, S. HMM Logos for visualization of protein families. BMC Bioinformatics 5, 7 (2004).
Acknowledgements
We thank B. Golden at Purdue University for assistance with figure 2 and H. Zhang at New Jersey Medical School for assistance with figure 4. Support from the following funding agencies is acknowledged: from the National Institutes of Health to P.C.B. and M.B.M. and from the American Cancer Society to A.D.P.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Glossary
- RNA-RECOGNITION MOTIF
-
(RRM). This motif is among the most common in eukaryotic proteins. It usually comprises 80–90 amino acids, forming a β–α–β–β–α–β structure. Many proteins that contain RRMs bind RNA in a sequence-specific manner.
- RNASE III
-
An endoribonuclease that cleaves RNA substrates containing regular double-helical or stem-loop structures.
- APTAMER
-
An RNA, either engineered or natural, that forms a precise three-dimensional structure and selectively binds a target molecule, for example a dsRBM-containing protein.
- 3′ UNTRANSLATED REGION
-
(3′ UTR). This is the sequence of a messenger RNA that is located downstream of the stop codon.
- HELICAL CHIMAERA
-
A helix in which one of the strands has a mixture of ribose and deoxyribose nucleotides.
- ANTIDETERMINANTS
-
Sequences that block the binding of a protein to an otherwise suitable site, first defined in tRNAs and later in RNase-III substrates.
- ADENOSINE DEAMINASE
-
An enzyme that catalyses adenosine-to-inosine conversion in an RNA substrate, a process also known as RNA editing.
- Z-α-DOMAIN
-
A protein domain that binds left-handed Z-form DNA, which is believed to occur transiently in the cell during gene transcription.
Rights and permissions
About this article
Cite this article
Tian, B., Bevilacqua, P., Diegelman-Parente, A. et al. The double-stranded-RNA-binding motif: interference and much more. Nat Rev Mol Cell Biol 5, 1013–1023 (2004). https://doi.org/10.1038/nrm1528
Issue Date:
DOI: https://doi.org/10.1038/nrm1528