Abstract
Even though yeast lack much of the molecular machinery that is responsible for apoptosis in metazoans, they can be a powerful tool in apoptosis research. The ectopic expression of several animal apoptosis proteins in yeast can help us to discover new genes — and chemical compounds — that modulate the cell-death pathways of higher eukaryotes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Engelberg-Kulka, H. & Glaser, G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53, 43–70 (1999).
Matsuyama, S., Nouraini, S. & Reed, J. C. Yeast as a tool for apoptosis research. Curr. Opin. Microbiol. 2, 618–623 (1999).
Fröhlich, K.-U. & Madeo, F. Apoptosis in yeast — a monocellular organism exhibits altruistic behaviour. FEBS Lett. 473, 6–9 (2000).
Beers, E. P. Programmed cell death during plant growth and development. Cell Death and Differentiation 4, 649–661 (1997).
Ellis, R., Yuan, J. & Horvitz, R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–668 (1991).
Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).
Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis. Cell 91, 443–446 (1997).
Reed, J. C. Mechanisms of apoptosis (Warner–Lambert Award). Am. J. Pathol. 157, 1415–1430 (2000).
Wang, K. K. Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26 (2000).
Susin, S. et al. Molecular characterisation of mitochondrial apoptosis-inducing factor (AIF). Nature 397, 441–446 (1999).
Parrish, J. et al. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90–94 (2001).
Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).
Jurgensmeier, J. M. et al. Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 8, 325–339 (1997).
Reed, J. C. & Bischoff, J. R. BIRinging chromosomes through cell division — and survivin' the experience. Cell 102, 545–548 (2000).
Madeo, F., Frohlich, E. & Frohlich, K. U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734 (1997).
Madeo, F. et al. Oxygen stress: a key to apoptosis in yeast. J. Cell Biol. 145, 757–767 (1999).
Shirogane, T. et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11, 709–719 (1999).
Ludovico, P., Sousa, M. J., Silva, M. T., Leao, C. & Corte-Real, M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147, 2409–2415 (2001).
Del Carratore, R. et al. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutation Res. 513, 183–191 (2002).
Laun, P. et al. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol. Microbiol. 39, 1166–1173 (2001).
Fröhlich, K.-U. & Madeo, F. Apoptosis in yeast: a new model for aging research. Exp. Gerontol. 37, 27–31 (2001).
Madeo, F. et al. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757–767 (1999).
Swiecilo, A., Krawiec, Z., Wawryn, J., Bartosz, G. & Bilinski, T. Effect of stress on the life span of the yeast Saccharomyces cerevisiae. Acta. Biochim. Pol. 47, 355–364 (2000).
Wawryn, J., Krzepilko, A., Myszka, A. & Bilinski, T. Deficiency in superoxide dismutases shortens life span of yeast cells. Acta. Biochim. Pol. 46, 249–253 (1999).
Jacobson, M. D. & Raff, M. C. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374, 814–816 (1995).
Madeo, F. et al. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9, 911–917 (2002).
Uren, A. G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).
Kane, D. J. et al. Bcl-2 inhibition of neural cell death: decreased generation of reactive oxygen species. Science 262, 1274–1276 (1993).
Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).
Kroemer, G. & Reed, J. C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).
Sato, T. et al. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc. Natl Acad. Sci. USA 91, 9238–9242 (1994).
Hanada, M., Aime-Sempe, C., Sato, T. & Reed, J. C. Structure–function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J. Biol. Chem. 270, 11962–11969 (1995).
Fesik, S. W. Insights into programmed cell death through structural biology. Cell 103, 273–282 (2000).
Schendel, S., Montal, M. & Reed, J. C. Bcl-2 family proteins as ion-channels. Cell Death Differ. 5, 372–380 (1998).
Marzo, I. et al. The pro-apoptotic protein Bax and the adenine nucleotide translocator cooperate in the control of mitochondrial membrane permeability and apoptosis. Science 281, 2027–2031 (1998).
Marzo, I. et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J. Exp. Med. 187, 1261–1271 (1998).
Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).
Gross, A., McDonnell, J. M. & Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).
Pavlov, E. V. et al. A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J. Cell Biol. 155, 725–731 (2001).
Matsuyama, S., Schendel, S. L., Xie, Z. H. & Reed, J. C. Cytoprotection by Bcl-2 requires the pore-forming α5 and α6 helices. J. Biol. Chem. 273, 30995–31001 (1998).
Zha, H. et al. Structure–function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. Biol. 16, 6494–6508 (1996).
Manon, S., Chaudhuri, B. & Buérin, M. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett. 415, 29–32 (1997).
Minn, A. J. et al. Bcl-xL regulates apoptosis by heterodimerization-dependent and-independent mechanisms. EMBO J. 18, 632–643 (1999).
Matsuyama, S., Llopi, J., Deveraux, Q. L., Tsien, R. & Reed, J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biol. 2, 318–325 (2000).
Gross, A. et al. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-XL . Mol. Cell. Biol. 20, 3125–3136 (2000).
Harris, M. H., Vander Heiden, M. G., Kron, S. J. & Thompson, C. B. Role of oxidative phosphorylation in Bax toxicity. Mol. Cell. Biol. 20, 3590–3596 (2000).
Haraguchi, M. et al. Apoptotic protease activating factor (Apaf-1)-independent cell death suppression by Bcl-2. J. Exp. Med. 191, 1709–1720 (2000).
Cheng, E. H.-Y. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).
Roucou, X., Prescott, M., Devenish, R. J. & Nagley, P. A cytochrome c–GFP fusion is not released from mitochondria into the cytoplasm upon expression of Bax in yeast cells. FEBS Lett. 471, 235–239 (2000).
Nomura, K., Imai, H., Koumura, T., Arai, M. & Nakagawa, Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J. Biol. Chem. 274, 29294–29302 (1999).
Oskarsson, H. J., Coppey, L., Weiss, R. M. & Li, W. G. Antioxidants attenuate myocyte apoptosis in the remote non-infarcted myocardium following large myocardial infarction. Cardiovasc. Res. 45, 679–687 (2000).
Kampranis, S. C. et al. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275, 29207–29216 (2000).
Moon, H. et al. Soybean ascorbate peroxidase suppresses Bax-induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem. Biophys. Res. Comm. 290, 457–462 (2002).
Longo, V. D., Ellerby, L. M., Bredesen, D. E., Valentine, J. S. & Gralla, E. B. Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J. Cell Biol. 137, 1581–1588 (1997).
Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031 (1998).
Jacotot, E. et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–45 (2000).
Vander Heiden, M. G., Chandel, N. S., Schumacker, P. T. & Thompson, C. B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).
Nouraini, S., Six, E., Matsuyama, S., Krajewski, S. & Reed, J. C. The putative pore forming-domain of Bax regulates mitochondrial localization and interaction with Bcl-XL . Mol. Cell. Biol. 20, 1604–1615 (2000).
Florio, M., Wilson, L. K., Trager, J. B., Thorner, J. & Martin, G. S. Aberrant protein phosphorylation at tyrosine is responsible for the growth-inhibitory action of pp60v-src expressed in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 5, 283–296 (1994).
Afifi, R., Sharf, R., Shtrichman, R. & Kleinberger, T. Selection of apoptosis-deficient adenovirus E4orf4 mutants in Saccharomyces cerevisiae. J. Virol. 75, 4444–4447 (2001).
Roopchand, D. E. et al. Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene 20, 5279–5290 (2001).
Hengartner, M. O. Programmed cell death in invertebrates. Curr. Opin. Genet. Dev. 6, 34–38 (1996).
Yang, X., Chang, H. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355–1357 (1998).
James, C., Gschmeissner, S., Fraser, A. & Evan, G. I. CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr. Biol. 7, 246–252 (1997).
Hawkins, C., Wang, S. & Hay, B. A cloning method to identify caspases and their regulators in yeast: identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proc. Natl Acad. Sci. USA 96, 2885–2890 (1999).
Wright, M. et al. Caspase-3 inhibits growth in Saccharomyces cerevisiae without causing cell death. FEBS Lett. 446, 9–14 (1999).
Ryser, S., Vial, E., Magnenat, E., Schlegel, W. & Maundrell, K. Reconstitution of caspase-mediated cell-death signalling in Schizosaccharomyces pombe. Curr. Genet. 36, 21–28 (1999).
Tao, W., Walke, D. W. & Morgan, J. I. Oligomerized Ced-4 kills budding yeast through a caspase-independent mechanism. Biochem. Biophys. Res. Commun. 260, 799–805 (1999).
Kang, J. et al. Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 3189–3198 (1999).
Hawkins, C. J. et al. Analysis of candidate antagonists of IAP-mediated caspase inhibition using yeast reconstituted with the mammalian Apaf-1-activated apoptosis mechanism. Apoptosis 6, 331–338 (2001).
Turner, S. J., Silke, J., Kenshole, B. & Ruby, J. Characterization of the ectomelia virus serpin, SPI-2. J. Gen. Virol. 81, 2425–2430 (2000).
Zhang, H. & Reed, J. C. Studies of apoptosis proteins in yeast. in Methods in Cell Biology Vol. 66 (eds Schwartz, L. & Ashwell, J.) 453–468 (Academic, San Diego, 2001).
Silke, J. et al. Direct inhibition of caspase-3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J. 20, 3114–3123 (2001).
Ekert, P. G., Silke, J., Hawkins, C. J., Verhagen, A. M. & Vaux, D. L. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J. Cell Biol. 152, 483–490 (2001).
Xu, Q. & Reed, J. C. BAX inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1, 337–346 (1998).
Zhang, H. et al. BAR: an apoptosis regulator at the intersection of caspase and Bcl-2 family proteins. Proc. Natl Acad. Sci. USA 97, 2597–2602 (2000).
Kawai, M., Pan, L., Reed, J. C. & Uchimiya, H. Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett. 464, 143–147 (1999).
Pan, L. et al. The Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) can function as a dominant suppressor of Bax-induced cell death of yeast. FEBS Lett. 508, 375–378 (2001).
Kawai-Yamada, M., Jin, L., Yoshinaga, K., Hirata, A. & Uchimiya, H. Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc. Natl Acad. Sci. USA 98, 12295–12300 (2001).
Levine, A., Belenghi, B., Damari-Weisler, H. & Granot, D. Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J. Biol. Chem. 276, 46284–46289 (2001).
Mittler, R. & Lam, E. Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol. 4, 10–15 (1996).
Jazwinski, S. M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91, 35–51 (1993).
Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).
Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).
Stroud, R. M., Reiling, K., Wiener, M. & Freymann, D. Ion-channel-forming colicins. Curr. Opin. Struct. Biol. 8, 525–533 (1998).
Asoh, S., Nishimaki, K., Nanbu-Wakao, R. & Ohta, S. A trace amount of the human pro-apoptotic factor Bax induces bacterial death accompanied by damage of DNA. J. Biol. Chem. 273, 11384–11391 (1998).
Matsuyama, S., Xu, Q., Velours, J. & Reed, J. C. Mitochondrial F0F1-ATPase proton-pump is required for function of pro-apoptotic protein Bax in yeast and mammalian cells. Mol. Cell 1, 327–336 (1998).
Acknowledgements
We thank R. Cornell for manuscript preparation and the National Institutes of Health for generous support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, C., Reed, J. Yeast and apoptosis. Nat Rev Mol Cell Biol 3, 453–459 (2002). https://doi.org/10.1038/nrm832
Issue Date:
DOI: https://doi.org/10.1038/nrm832
This article is cited by
-
In vitro nephrotoxicity and anticancer potency of newly synthesized cadmium complexes
Scientific Reports (2019)
-
Comparative Studies on the Role of Organic Biostimulant in Resistant and Susceptible Cultivars of Rice Grown under Saline Stress - Organic Biostimulant Alleviate Saline Stress in Tolerant and Susceptible Cultivars of Rice
Journal of Crop Science and Biotechnology (2018)
-
Effects of psychosocial stress on episodic memory updating
Psychopharmacology (2013)
-
Live image profiling of neural crest lineages in zebrafish transgenic lines
Molecules and Cells (2013)
-
Mitochondrial fission and fusion in Dictyostelium discoideum: a search for proteins involved in membrane dynamics
BMC Research Notes (2012)