Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developing animal models for polymicrobial diseases

Key Points

  • Although polymicrobial diseases are not a new concept for microbiologists, they are experiencing a resurgence of interest owing to the development of suitable animal models and new molecular techniques that allow these diseases to be studied effectively. This broad review provides an excellent introduction to this fascinating topic.

  • Examples are included of each type of polymicrobial disease and the animal models that are used to study these diseases are discussed. In many instances, schematics for the animal model are presented.

  • Viral co-infections including bovine viral diarrhoeal viruses, porcine reproductive and respiratory syndrome, mixed hepatitis virus infections and HIV co-infection with hepatitis virus are discussed, together with attempts to model these diseases in animals.

  • Viral and bacterial co-infections are reviewed with a special focus on otitis media and the rodent models that have been used to probe this important childhood illness.

  • Of the polybacterial diseases, periodontitis is one of the best understood and a clinically relevant rodent model is now available. This model, and the role of biofilm formation in periodontitis are examined.

  • Fungal infections of humans are often referred to as 'opportunistic' but in fact these infections are often fungal co-infections with viruses such as HIV and fungal mixed co-infections. The roles of these infections in disease and the rodent models used to study them are discussed.

  • Parasite co-infections are thought to have a role in the severity of malaria and the severity of Lyme arthritis. These diseases and attempts to model them are evaluated.

  • Finally, co-infections that are associated with virus-induced immunosuppression are discussed, together with their animal models.

Abstract

Polymicrobial diseases involve two or more microorganisms that act synergistically, or in succession, to mediate complex disease processes. Although polymicrobial diseases in animals and humans can be caused by similar organisms, these diseases are often also caused by organisms from different kingdoms, genera, species, strains, substrains and even by phenotypic variants of a single species. Animal models are often required to understand the mechanisms of pathogenesis, and to develop therapies and prevention regimes. However, reproducing polymicrobial diseases of humans in animal hosts presents significant challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human polymicrobial diseases.
Figure 2: A chinchilla experimental model for otitis media.
Figure 3: A model of oral biofilm formation.
Figure 4: Animal models for periodontal disease.
Figure 5: A mouse model for candidiasis.
Figure 6: Animal model for Lyme disease and human granulocytic ehrlichiosis (HGE) co-infection.

Similar content being viewed by others

References

  1. Brogden, K. A. & Guthmiller, J. M. Polymicrobial diseases, a concept whose time has come. ASM News 69, 69–73 (2003). Introduces and provides a concise overview of polymicrobial diseases.

    Google Scholar 

  2. Smith, H. The role of microbial interactions in infectious disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 297, 551–561 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Jakab, G. J. Mechanisms of bacterial superinfections in viral pneumonias. Schweiz Med. Wochenschr. 115, 75–86 (1985).

    CAS  PubMed  Google Scholar 

  4. Hament, J. M. et al. Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol. Med. Microbiol. 26, 189–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. McCullers, J. A. & Tuomanen, E. I. Molecular pathogenesis of pneumococcal pneumonia. Front. Biosci. 6, D877–D889 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Soll, D. R. in Polymicrobial Diseases (eds Brogden, K. A. & Guthmiller, J. M.) 335–356 (ASM Press, Washington DC, 2002).

    Google Scholar 

  7. Bakaletz, L. O. in Polymicrobial Diseases (eds Brogden, K. A. & Guthmiller, J. M.) 259–298 (ASM Press, Washington DC, 2002).

    Google Scholar 

  8. Fuqua, C., Parsek, M. R. & Greenberg, E. P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Parsek, M. R. & Singh, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57, 677–701 (2003). Discusses our increasing understanding of the link between biofilms and the pathogenesis of human disease, as well as identifying the need for relevant animal models with which to study these infectious states.

    Article  CAS  PubMed  Google Scholar 

  10. Brogden, K. A. in Polymicrobial Diseases (eds Brogden, K. A. & Guthmiller, J. M.) 3–20 (ASM Press, Washington DC, 2002). This book draws together our current understanding of polymicrobial diseases due to diverse combinations of microorganimsms and the animal models that are used to study them.

    Book  Google Scholar 

  11. Feterowski, C. et al. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology 109, 426–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Godshall, C. J., Lentsch, A. B., Peyton, J. C., Scott, M. J. & Cheadle, W. G. STAT4 is required for antibacterial defense but enhances mortality during polymicrobial sepsis. Clin. Diagn. Lab. Immunol. 8, 1044–1048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Echtenacher, B., Freudenberg, M. A., Jack, R. S. & Mannel, D. N. Differences in innate defense mechanisms in endotoxemia and polymicrobial septic peritonitis. Infect. Immun. 69, 7271–7276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soriano, F. G. et al. Resistance to acute septic peritonitis in poly(ADP-ribose) polymerase-1-deficient mice. Shock 17, 286–292 (2002).

    Article  PubMed  Google Scholar 

  15. Shelley, O., Murphy, T., Paterson, H., Mannick, J. A. & Lederer, J. A. Interaction between the innate and adaptive immune systems is required to survive sepsis and control inflammation after injury. Shock 20, 123–129 (2003).

    Article  PubMed  Google Scholar 

  16. Gold, J. A. et al. CD40 contributes to lethality in acute sepsis: in vivo role for CD40 in innate immunity. Infect. Immun. 71, 3521–3528 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Celik, I. et al. Role of the classical pathway of complement activation in experimentally induced polymicrobial peritonitis. Infect. Immun. 69, 7304–7309 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chae, P., Im, M., Gibson, F., Jiang, Y. & Graves, D. T. Mice lacking monocyte chemoattractant protein 1 have enhanced susceptibility to an interstitial polymicrobial infection due to impaired monocyte recruitment. Infect. Immun. 70, 3164–3169 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moro, M. H. et al. Increased arthritis severity in mice co-infected with Borrelia burgdorferi and Babesia microti. J. Infect. Dis. 186, 428–431 (2002). Provided the background for the development of an animal model of parasitic co-infection, as well as demonstrating the potential importance of mouse strain — genetic background — in disease outcome.

    Article  PubMed  Google Scholar 

  20. Zeidner, N. S., Dolan, M. C., Massung, R., Piesman, J. & Fish, D. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis suppresses IL-2 and IFN-γ production and promotes an IL-4 response in C3H/HeJ mice. Parasite Immunol. 22, 581–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Bolin, C. A. in Polymicrobial Diseases (eds Brogden, K. A. & Guthmiller, J. M.) 33–50 (ASM Press, Washington DC, 2002).

    Google Scholar 

  22. Van Reeth, K., Nauwynck, H. & Pensaert, M. Dual infections of feeder pigs with porcine reproductive and respiratory syndrome virus followed by porcine respiratory coronavirus or swine influenza virus: a clinical and virological study. Vet. Microbiol. 48, 325–335 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Reeth, K. Pathogenesis and clinical aspects of a respiratory porcine reproductive and respiratory syndrome virus infection. Vet. Microbiol. 55, 223–230 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Pol, J. M., van Leengoed, L. A., Stockhofe, N., Kok, G. & Wensvoort, G. Dual infections of PRRSV/influenza or PRRSV/Actinobacillus pleuropneumoniae in the respiratory tract. Vet. Microbiol. 55, 259–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Shibata, I., Yazawa, S., Ono, M. & Okuda, Y. Experimental dual infection of specific pathogen-free pigs with porcine reproductive and respiratory syndrome virus and pseudorabies virus. J. Vet. Med. B Infect. Dis. Vet. Public Health 50, 14–19 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park, B. K. & Joo, H. S. Induction of dual infections in newborn and three-week-old pigs by use of two plaque size variants of porcine reproductive and respiratory syndrome virus. Am. J. Vet. Res. 58, 257–259 (1997).

    CAS  PubMed  Google Scholar 

  27. Allan, G. M. et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J. Comp. Pathol. 121, 1–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J., Choi, C. & Chae, C. Pathogenesis of postweaning multisystemic wasting syndrome reproduced by co-infection with Korean isolates of porcine circovirus 2 and porcine parvovirus. J. Comp. Pathol. 128, 52–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Mathurin, P. et al. Replication status and histological features of patients with triple (B, C, D) and dual (B, C) hepatic infections. J. Viral Hepat. 7, 15–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Myers, R. P. et al. in Polymicrobial Diseases (eds Brogden, K. A. & Guthmiller, J. M.) 51–73 (ASM Press, Washington DC, 2002).

    Google Scholar 

  31. Prakashm, O., Mason, A., Luftig, R. B. & Bautista, A. P. Hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) infections in alcoholics. Front. Biosci. 1, e286–e300 (2002).

    Google Scholar 

  32. Antonucci, G., Goletti, D., Lanini, S., Girardi, E. & Loiacono, O. HIV/HCV co-infection: putting the pieces of the puzzle together. Cell Death Differ. 10, S25–S26 (2003).

    Article  PubMed  Google Scholar 

  33. Araujo, A. et al. Polymicrobial Diseases (eds Brogden, K. A. & Guthmiller, J. M.) 75–97 (ASM Press, Washington DC, 2002).

    Google Scholar 

  34. Viejo-Borbolla, A. & Schulz, T. F. Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8): key aspects of epidemiology and pathogenesis. AIDS Rev. 5, 222–229 (2003).

    PubMed  Google Scholar 

  35. Cathomas, G. Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) as a tumour virus. Herpes 10, 72–77 (2003).

    PubMed  Google Scholar 

  36. Smith, D. HIV and herpes co-infection, an unfortunate partnership. J. HIV Ther. 9, 1–3 (2004).

    PubMed  Google Scholar 

  37. Freedman, E. & Mindel, A. Epidemiology of herpes and HIV co-infection. J. HIV Ther. 9, 4–8 (2004).

    PubMed  Google Scholar 

  38. Celum, C. L. The interaction between herpes simplex virus and human immunodeficiency virus. Herpes 11, A36–A45 (2004).

    Google Scholar 

  39. Galvin, S. R. & Cohen, M. S. The role of sexually transmitted diseases in HIV transmission. Nature Rev. Microbiol. 2, 33–42 (2004).

    Article  CAS  Google Scholar 

  40. Unutmaz, D., KewalRamani, V. N. & Littman, D. R. G protein-coupled receptors in HIV and SIV entry: new perspectives on lentivirus–host interactions and on the utility of animal models. Semin. Immunol. 10, 225–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Romanova, J. R., Ermachenko, T. A., Alexandrova, G. I. & Tannock, G. A. Interference between cold-adapted (ca) influenza A and B vaccine reassortants or between ca reassortants and wild-type strains in eggs and mice. Vaccine 12, 23–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Bailly, J. E. & Brown, E. G. Interference by a non-defective variant of influenza A virus is due to enhanced RNA synthesis and assembly. Virus Res. 57, 81–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Potter, C. W., Jennings, R., Clark, A. & Ali, M. Interference following dual inoculation with influenza A (H3N2) and (H1N1) viruses in ferrets and volunteers. J. Med. Virol. 11, 77–86 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Towers, G. J. & Goff, S. P. Post-entry restriction of retroviral infections. AIDS Rev. 5, 156–164 (2003).

    PubMed  Google Scholar 

  45. Granger, S. W. & Fan, H. The helper virus envelope glycoprotein affects the disease specificity of a recombinant murine leukemia virus carrying a v-myc oncogene. Virus Genes 22, 311–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Atencio, I. A. et al. A model for mixed virus disease: co-infection with Moloney murine leukemia virus potentiates runting induced by polyomavirus (A2 strain) in Balb/c and NIH Swiss mice. Virology 212, 356–366 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Truckenmiller, M. E., Kulaga, H., Gugel, E., Dickerson, D. & Kindt, T. J. Evidence for dual infection of rabbits with the human retroviruses HTLV-I and HIV-1. Res. Immunol. 140, 527–544 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Machida, H. et al. Dual infection of rabbits with human T cell lymphotropic virus types I and II. Jpn J. Cancer Res. 88, 137–142 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gravell, M., London, W. T., Hamilton, R. S., Stone, G. & Monzon, M. Infection of macaque monkeys with simian immunodeficiency virus from African green monkeys: virulence and activation of latent infection. J. Med. Primatol. 18, 247–254 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Otten, R. A. et al. Identification of a window period for susceptibility to dual infection with two distinct human immunodeficiency virus type 2 isolates in a Macaca nemestrina (pig-tailed macaque) model. J. Infect. Dis. 180, 673–684 (1999). One of the few examples of an attempt to model a human viral co-infection in which viral host restriction presents significant challenges.

    Article  CAS  PubMed  Google Scholar 

  51. Wei, Q. & Fultz, P. N. Extensive diversification of human immunodeficiency virus type 1 subtype B strains during dual infection of a chimpanzee that progressed to AIDS. J. Virol. 72, 3005–3017 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brotman, B. et al. Interference between non-A, non-B and hepatitis B virus infection in chimpanzees. J. Med. Virol. 11, 191–205 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Kos, T. et al. Hepatitis δ-virus cDNA sequence from an acutely HBV-infected chimpanzee: sequence conservation in experimental animals. J. Med. Virol. 34, 268–279 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Highlander, S. K. Molecular genetic analysis of virulence in Mannheimia (Pasteurella) haemolytica. Front. Biosci. 6, D1128–D1150 (2001).

    CAS  PubMed  Google Scholar 

  55. Galdiero, M. et al. Coinfection with BHV-1 modulates cell adhesion and invasion by P. multocida and Mannheimia (Pasteurella) haemolytica. Microbiologica 25, 427–436 (2002).

    CAS  PubMed  Google Scholar 

  56. Sisson, J. H. et al. Smoke and viral infection cause cilia loss detectable by bronchoalveolar lavage cytology and dynein ELISA. Am. J. Respir. Crit. Care Med. 149, 205–213 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Bryson, D. G., Platten, M. F., McConnell, S. & McNulty, M. S. Ultrastructural features of lesions in bronchiolar epithelium in induced respiratory syncytial virus pneumonia of calves. Vet. Pathol. 28, 293–299 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Al-Darraji, A. M., Cutlip, R. C. & Lehmkuhl, H. D. Experimental infection of lambs with bovine respiratory syncytial virus and Pasteurella haemolytica: immunofluorescent and electron microscopic studies. Am. J. Vet. Res. 43, 230–235 (1982).

    CAS  PubMed  Google Scholar 

  59. Masot, A. J., Gomez-Tejedor, C., Gomez, L., Gazquez, A. & Redondo, E. Pathological study of experimentally induced bovine respiratory syncytial viral infection in lambs. Zentralbl. Veterinarmed. B 43, 233–243 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Valarcher, J. F. et al. Role of α/β interferons in the attenuation and immunogenicity of recombinant bovine respiratory syncytial viruses lacking NS proteins. J. Virol. 77, 8426–8439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bossert, B., Marozin, S. & Conzelmann, K. K. Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. J. Virol. 77, 8661–8668 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Woods, R. D. et al. Bovine viral diarrhea virus isolated from fetal calf serum enhances pathogenicity of attenuated transmissible gastroenteritis virus in neonatal pigs. J. Vet. Diagn. Invest. 11, 400–407 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Brockmeier, S. L. et al. Effects of intranasal inoculation with Bordetella bronchiseptica, porcine reproductive and respiratory syndrome virus, or a combination of both organisms on subsequent infection with Pasteurella multocida in pigs. Am. J. Vet. Res. 62, 521–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Harms, P. A. et al. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet. Pathol. 38, 528–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Brockmeier, S. L., Halbur, P. G. & Thacker, E. L. in Polymicrobial Diseases (eds Brogden, K. A. & Guthmiller, J. M.) 231–258 (ASM Press, Washington DC, 2002).

    Google Scholar 

  66. Kim, J., Chung, H. -K. & Chae, C. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet. J. 166, 251–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Feng, W. et al. In utero infection by porcine reproductive and respiratory syndrome virus is sufficient to increase susceptibility of piglets to challenge by Streptococcus suis type II. J. Virol. 75, 4889–4895 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brockmeier, S. L., Palmer, M. V. & Bolin, S. R. Effects of intranasal inoculation of porcine reproductive and respiratory syndrome virus, Bordetella bronchiseptica, or a combination of both organisms in pigs. Am. J. Vet. Res. 61, 892–899 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Thanawongnuwech, R., Young, T. F., Thacker, B. J. & Thacker, E. L. Differential production of proinflammatory cytokines: in vitro PRRSV and Mycoplasma hyopneumoniae co-infection model. Vet. Immunol. Immunopathol. 79, 115–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Pol, J. M., van Leengoed, L. A., Stockhofe, N., Kok, G. & Wensvoort, G. Dual infections of PRRSV/influenza or PRRSV/Actinobacillus pleuropneumoniae in the respiratory tract. Vet. Microbiol. 55, 259–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Guy, J. S., Smith, L. G., Breslin, J. J., Vaillancourt, J. P. & Barnes, H. J. High mortality and growth depression experimentally produced in young turkeys by dual infection with enteropathogenic Escherichia coli and turkey coronavirus. Avian Dis. 44, 105–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Turpin, E. A., Perkins, L. E. & Swayne, D. E. Experimental infection of turkeys with avian pneumovirus and either Newcastle disease virus or Escherichia coli. Avian Dis. 46, 412–422 (2002).

    Article  PubMed  Google Scholar 

  73. Laupland, K. B. et al. Invasive group A streptococcal disease in children and association with varicella-zoster virus infection. Ontario group A streptococcal study group. Pediatrics 105, E60 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Peterson, C. L. et al. Risk factors for invasive group A streptococcal infections in children with varicella: a case-control study. Pediatr. Infect. Dis. J. 15, 151–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Vugia, D. J. et al. Invasive group A streptococcal infections in children with varicella in Southern California. Pediatr. Infect. Dis. J. 15, 146–150 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Nokso-Koivisto, J. et al. Presence of specific viruses in the middle ear fluids and respiratory secretions of young children with acute otitis media. J. Med. Virol. 72, 241–248 (2004).

    Article  PubMed  Google Scholar 

  77. Hakansson, A et al. Adenovirus infection enhances in vitro adherence of Streptococcus pneumoniae. Infect. Immun. 62, 2707–2714 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tong, H. H. et al. Effect of adenovirus type 1 and influenza A virus on Streptococcus pneumoniae nasopharyngeal colonization and otitis media in the chinchilla. Ann. Otol. Rhinol. Laryngol. 109, 1021–1027 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Peltola, V. T. & McCullers, J. A. Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatr. Infect. Dis. J. 23, S87–S97 (2004) Reviews the evidence in support of the crucial role of a viral virulence factor in predisposing both the upper and lower respiratory tract to bacterial secondary infections.

    Article  PubMed  Google Scholar 

  80. Bakaletz, L. O., Murwin, D. M. & Billy, J. M. Adenovirus serotype 1 does not act synergistically with Moraxella (Branhamella) catarrhalis to induce otitis media in the chinchilla. Infect. Immun. 63, 4188–4190 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tong, H. H. et al. Comparison of alteration of cell surface carbohydrates of the chinchilla tubotympanum and colonial opacity phenotype of Streptococcus pneumoniae during experimental pneumococcal otitis media with or without an antecedent influenza A virus infection. Infect. Immun. 70, 4292–4301 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wadowsky, R. M. et al. Effect of experimental influenza A virus infection on isolation of Streptococcus pneumoniae and other aerobic bacteria from the oropharynges of allergic and nonallergic adult subjects. Infect. Immun. 63, 1153–1157 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Heikkinen, T., Thint, M. & Chonmaitree, T. Prevalence of various respiratory viruses in the middle ear during acute otitis media. N. Engl. J. Med. 340, 260–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Bandi, V. et al. Infectious exacerbations of chronic obstructive pulmonary disease associated with respiratory viruses and non-typeable Haemophilus influenzae. FEMS Immunol. Med. Microbiol. 37, 69–75 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zheng, S. et al. Impaired innate host defense causes susceptibility to respiratory virus infections in cystic fibrosis. Immunity 18, 619–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Duan, K. et al. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 50, 1477–1491 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Slots, J., Kamma, J. J. & Sugar, C. The herpesvirus-Porphyromonas gingivalis-periodontitis axis. J. Periodontal Res. 38, 318–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Kamma, J. J. & Slots, J. Herpesviral–bacterial interactions in aggressive periodontitis. J. Clin. Periodontol. 30, 420–426 (2003).

    Article  PubMed  Google Scholar 

  89. McCullers, J. A. & Webster, R. G. A mouse model of dual infection with influenza virus and Streptococcus pneumoniae. Int. Congr. Ser. 1219, 601–607 (2001).

    Article  Google Scholar 

  90. McCullers, J. A. & Rehg, J. E. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J. Infect. Dis. 186, 341–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. McCullers, J. A. & Bartmess, K. C. Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J. Infect. Dis. 187, 1000–1009 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Alonso, J. M. et al. A model of meningococcal bacteremia after respiratory superinfection in influenza A virus-infected mice. FEMS Microbiol. Lett. 222, 99–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Giebink, G. S. et al. Experimental otitis media after nasal inoculation of Streptococcus pneumoniae and influenza A virus in chinchillas. Infect. Immun. 30, 445–450 (1980). The chinchilla superinfection model developed in this study was the first animal model to demonstrate conclusively the important role of the upper respiratory tract viruses in predisposing the middle ear to invasion by bacteria colonizing the nasopharynx.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Giebink, G. S., Ripley, M. L. & Wright, P. F. Eustachian tube histopathology during experimental influenza A virus infection in the chinchilla. Ann. Otol. Rhinol. Laryngol. 96, 199–206 (1987).

    Article  CAS  PubMed  Google Scholar 

  95. Giebink, G. S. & Wright, P. F. Different virulence of influenza A virus strains and susceptibility to pneumococcal otitis media in chinchillas. Infect. Immun. 41, 913–920 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abramson, J. S. et al. Polymorphonuclear leukocyte dysfunction during influenza virus infection in chinchillas. J. Infect. Dis. 143, 836–845 (1981).

    Article  CAS  PubMed  Google Scholar 

  97. Suzuki, K. & Bakaletz, L. O. Synergistic effect of adenovirus type 1 and nontypeable Haemophilus influenzae in a chinchilla model of experimental otitis media. Infect. Immun. 62, 1710–1718 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bakaletz, L. O. & Holmes, K. A. Evidence for transudation of specific antibody into the middle ears of parenterally immunized chinchillas after an upper respiratory tract infection with adenovirus. Clin. Diagn. Lab. Immunol. 4, 223–225 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Miyamoto, N. & Bakaletz, L. O. Kinetics of the ascension of NTHi from the nasopharynx to the middle ear coincident with adenovirus-induced compromise in the chinchilla. Microb. Pathog. 23, 119–126 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Mason, K. M., Munson, R. S. Jr & Bakaletz, L. O. Nontypeable Haemophilus influenzae gene expression induced in vivo in a chinchilla model of otitis media. Infect. Immun. 71, 3454–3462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bakaletz, L. O. et al. Protection against development of otitis media induced by nontypeable Haemophilus influenzae by both active and passive immunization in a chinchilla model of virus–bacterium superinfection. Infect. Immun. 67, 2746–2762 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kennedy, B. J. et al. Passive transfer of antiserum specific for immunogens derived from a nontypeable Haemophilus influenzae adhesin and lipoprotein D prevents otitis media after heterologous challenge. Infect. Immun. 68, 2756–2765 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bakaletz, L. O. et al. Relative immunogenicity and efficacy of two synthetic chimeric peptides of fimbrin as vaccinogens against nasopharyngeal colonization by nontypeable Haemophilus influenzae in the chinchilla. Vaccine 15, 955–961 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Patel, J. et al. Effect of respiratory syncytial virus on adherence, colonization and immunity of non-typable Haemophilus influenzae: implications for otitis media. Int. J. Pediatr. Otorhinolaryngol. 23, 15–23 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Legge, K. L. & Braciale, T. J. Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 18, 265–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Magyar, T., King, V. L. & Kovacs, F. Evaluation of vaccines for atrophic rhinitis — a comparison of three challenge models. Vaccine 20, 1797–1802 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Magyar, T. et al. The pathological effect of the Bordetella dermonecrotic toxin in mice. Acta Vet. Hung. 48, 397–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Magyar, T. & Glavits, R. Immunopathological changes in mice caused by Bordetella bronchiseptica and Pasteurella multocida. Acta Vet. Hung. 38, 203–210 (1990).

    CAS  PubMed  Google Scholar 

  109. Kuriyama, T. et al. The virulence of mixed infection with Streptococcus constellatus and Fusobacterium nucleatum in a murine orofacial infection model. Microbes Infect. 2, 1425–1430 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Brook, I. & Shah, K. Bacteriology of adenoids and tonsils in children with recurrent adenotonsillitis. Ann. Otol. Rhinol. Laryngol. 110, 844–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999). An excellent review of the role of polymicrobial biofilms in diverse anatomical niches that are involved in persistent and chronic human diseases.

    Article  CAS  PubMed  Google Scholar 

  112. Shrotri, M. S., Peyton, J. C. & Cheadle, W. G. in Handbook of Animal Models of Infection (eds Sande, C. et al.) 173–181 (Academic Press, San Diego, 1999).

    Book  Google Scholar 

  113. Merino, L. A. et al. Bacteriologic findings in patients with chronic sinusitis. Ear Nose Throat J. 82, 798–800 (2003).

    Article  PubMed  Google Scholar 

  114. Brook, I. Microbiology of polymicrobial abscesses and implications for therapy. J. Antimicrob. Chemother. 50, 805–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Brook, I., Hunter, V. & Walker, R. I. Synergistic effect of bacteroides, Clostridium, Fusobacterium, anaerobic cocci, and aerobic bacteria on mortality and induction of subcutaneous abscesses in mice. J. Infect. Dis. 149, 924–928 (1984).

    Article  CAS  PubMed  Google Scholar 

  116. Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113, S14–S19 (2002).

    Article  Google Scholar 

  117. Domann, E. et al. Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J. Clin. Microbiol. 41, 5500–5510 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Okuda, K., Kato, T. & Ishihara, K. Involvement of periodontopathic biofilm in vascular diseases. Oral Dis. 10, 5–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Graves, D. T., Jiang, Y. & Genco, C. Periodontal disease: bacterial virulence factors, host response and impact on systemic health. Curr. Opin. Infect. Dis. 13, 227–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Rickard, A. H. et al. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11, 94–100 (2003). An overview of the molecular mechanisms by which bacteria interact with one another to construct complex multispecies biofilms, with emphasis on those that occur in the oral cavity.

    Article  CAS  PubMed  Google Scholar 

  121. Rumpf, R. W., Griffen, A. L. & Leys, E. J. Phylogeny of Porphyromonas gingivalis by ribosomal intergenic spacer region analysis. J. Clin. Microbiol. 38, 1807–1810 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Leys, E. J. et al. Association of Bacteroides forsythus and a novel Bacteroides phylotype with periodontitis. J. Clin. Microbiol. 40, 821–825 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kazor, C. E. et al. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 41, 558–563 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brinig, M. M. et al. Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl. Environ. Microbiol. 69, 1687–1694 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ouverney, C. C., Armitage, G. C. & Relman, D. A. Single-cell enumeration of an uncultivated TM7 subgroup in the human subgingival crevice. Appl. Environ. Microbiol. 69, 6294–6298 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Edwards, A. M. et al. Genetic relatedness and phenotypic characteristics of Treponema associated with human periodontal tissues and ruminant foot disease. Microbiology 149, 1083–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Kumar, P. S. et al. New bacterial species associated with chronic periodontitis. J. Dent. Res. 82, 338–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Guthmiller, J. M., Lally, E. T. & Korostoff, J. Beyond the specific plaque hypothesis: are highly leukotoxic strains of Actinobacillus actinomycetemcomitans a paradigm for periodontal pathogenesis? Crit. Rev. Oral Biol. Med. 12, 116–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Graves, D. T. & Cochran, D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J. Periodontol. 74, 391–401 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Hay, P. E. in Polymicrobial Diseases (eds Brogden, K. A. & Guthmiller, J. M.) 127–135 (ASM Press, Washington DC, 2002).

    Google Scholar 

  131. Antonio, M. A., Hawes, S. E. & Hillier, S. L. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J. Infect. Dis. 180, 1950–1956 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Hawes, S. E. et al. Hydrogen peroxide-producing lactobacilli and acquisition of vaginal infections. J. Infect. Dis. 174, 1058–1063 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Wiesenfeld, H. C. et al. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin. Infect. Dis. 36, 663–668 (2003).

    Article  PubMed  Google Scholar 

  134. Cherpes, T. L. et al. Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin. Infect. Dis. 37, 319–325 (2003).

    Article  PubMed  Google Scholar 

  135. Chen, C. P. et al. Interleukin-1 and tumor necrosis factor receptor signaling is not required for bacteria-induced osteoclastogenesis and bone loss but is essential for protecting the host from a mixed anaerobic infection. Am. J. Pathol. 155, 2145–2152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fine, D. H. et al. Colonization and persistence of rough and smooth colony variants of Actinobacillus actinomycetemcomitans in the mouths of rats. Arch. Oral. Biol. 46, 1065–1078 (2001). Provided the background for the development of an animal model of the relative bacterial colonization and persistence by single phenotypic variants of a bacterium known to have a role in periodontitis.

    Article  CAS  PubMed  Google Scholar 

  137. Schreiner, H. C. et al. Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc. Natl Acad. Sci. USA 100, 7295–7300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Delima, A. J. et al. Inflammation and tissue loss caused by periodontal pathogens is reduced by interleukin-1 antagonists. J. Infect. Dis. 186, 511–516 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Schou, S., Holmstrup, P. & Kornman, K. S. Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J. Periodontol. 64, 497–508 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Dupont, H. et al. Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat models of peritonitis. Infect. Immun. 66, 2570–2575 (1998). Exemplifies the potential for different animal models to provide disparate data and shows that there can be species and model dependency to our ability to define and characterize microbial virulence determinants in polymicrobial diseases origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Montravers, P. et al. Microbiological and inflammatory effects of murine recombinant interleukin-10 in two models of polymicrobial peritonitis in rats. Infect. Immun. 67, 1579–1584 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Godshall, C. J. et al. STAT4 is required for antibacterial defense but enhances mortality during polymicrobial sepsis. Clin. Diagn. Lab. Immunol. 8, 1044–1048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Remick, D. G. et al. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13, 110–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Browder, W. Early activation of pulmonary nuclear factor κB and nuclear factor interleukin-6 in polymicrobial sepsis. J. Trauma 46, 590–596 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Villa, P. et al. Granulocyte colony-stimulating factor and antibiotics in the prophylaxis of a murine model of polymicrobial peritonitis and sepsis. J. Infect. Dis. 178, 471–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Doerschug, K. C., Powers, L. S., Monick, M. M., Thorne, P. S. & Hunninghake, G. W. Antibiotics delay but do not prevent bacteremia and lung injury in murine sepsis. Crit. Care Med. 32, 489–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Burch, P. T., Scott, M. J., Wortz, G. N., Peyton, J. C. & Cheadle, W. G. Mortality in murine peritonitis correlates with increased Escherichia coli adherence to the intestinal mucosa. Am. Surg. 70, 333–341 (2004).

    PubMed  Google Scholar 

  148. van Griensven, M. et al. Polymicrobial sepsis induces organ changes due to granulocyte adhesion in a murine two hit model of trauma. Exp. Toxicol. Pathol. 54, 203–209 (2002).

    Article  PubMed  Google Scholar 

  149. Williams, D. L. et al. Modulation of the phosphoinositide 3-kinase pathway alters innate resistance to polymicrobial sepsis. J. Immunol. 172, 449–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Hildebrand, F., Pape, H. C., Hoevel, P., Krettek, C. & van Griensven, M. The importance of systemic cytokines in the pathogenesis of polymicrobial sepsis and dehydroepiandrosterone treatment in a rodent model. Shock 20, 338–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Opal, S. M., Palardy, J. E., Parejo, N. A. & Creasey, A. A. The activity of tissue factor pathway inhibitor in experimental models of superantigen-induced shock and polymicrobial intra-abdominal sepsis. Crit. Care Med. 29, 13–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Douglas, L. J. Candida biofilms and their role in infection. Trends Microbiol. 11, 30–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Holmes, A. R., Gopal, P. K. & Jenkinson, H. F. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infect. Immun. 63, 1827–1834 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Soll, D. R. Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 26, 10–20 (2004). Reviews the pathogenic potential and phenotypic variability of C. albicans and illustrates that the co-infecting microorganisms can be phenotypic variants of a single microbial strain.

    Article  CAS  PubMed  Google Scholar 

  155. Brockert, P. J. et al. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect. Immun. 71, 7109–7118 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hogan, D. & Kolter, R. in ASM Conference on Polymicrobial Diseases Abstract 14 (ASM, Lake Tahoe, Nevada, 2003).

    Google Scholar 

  157. Hogan, D. A. & Kolter, R. Pseudomonas–Candida interactions: an ecological role for virulence factors. Science 296, 2229–2232 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Samaranayake, Y. H. et al. The relative pathogenicity of Candida krusei and C. albicans in the rat oral mucosa. J. Med. Microbiol. 47, 1047–1057 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Cole, M. F. et al. Avirulence of Candida albicans auxotrophic mutants in a rat model of oropharyngeal candidiasis. FEMS Microbiol. Lett. 126, 177–180 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Arendrup, M., Horn, T. & Frimodt-Moller, N. In vivo pathogenicity of eight medically relevant Candida species in an animal model. Infection 30, 286–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Fidel, P. L. Jr et al. A murine model of Candida glabrata vaginitis. J. Infect. Dis. 173, 425–431 (1996).

    Article  PubMed  Google Scholar 

  162. Fidel, P. L. Jr. The protective immune response against vaginal candidiasis: lessons learned from clinical studies and animal models. Int. Rev. Immunol. 21, 515–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Saville, S. P. et al. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell 2, 1053–1060 (2003). Provided the background for the development of a murine model of fungal co-infection that allowed the demonstration of the importance of the ability of Candida albicans to switch morphology from a yeast to a filamentous form in pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nacher, M. et al. Ascaris lumbricoides infection is associated with protection from cerebral malaria. Parasite Immunol. 22, 107–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Nacher, M. et al. Contemporaneous and successive mixed Plasmodium falciparum and Plasmodium vivax infections are associated with Ascaris lumbricoides: an immunomodulating effect? J. Parasitol. 87, 912–915 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Nacher, M. et al. Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J. Parasitol. 88, 55–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Kamal, S. M. et al. Specific cellular immune response and cytokine patterns in patients coinfected with hepatitis C virus and Schistosoma mansoni. J. Infect. Dis. 184, 972–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Kamal, S. M. et al. Kinetics of intrahepatic hepatitis C virus (HCV)-specific CD4+ T cell responses in HCV and Schistosoma mansoni coinfection: relation to progression of liver fibrosis. J. Infect. Dis. 189, 1140–1150 (2004).

    Article  PubMed  Google Scholar 

  169. Mwatha, J. K. et al. Asociations between anti-Schistosoma mansoni and anti-Plasmodium falciparum antibody responses and hepatosplenomegaly, in Kenyan schoolchildren. J. Infect. Dis. 187, 1337–1341 (2003).

    Article  PubMed  Google Scholar 

  170. Belongia, E. A. Epidemiology and impact of coinfections acquired from Ixodes. Vector Borne Zoonotic Dis. 2, 265–273 (2002).

    Article  PubMed  Google Scholar 

  171. Stricker, R. B. et al. Coinfection in patients with lyme disease: how big a risk? Clin. Infect. Dis. 37, 1277–1278 (2003).

    Article  PubMed  Google Scholar 

  172. Yoeli, M. Some aspects of concomitant infections of plasmodia and schistosomes. I. The effect of Schistosoma mansoni on the course of infection of Plasmodium berghei in the field vole Microtus guentheri. Am. J. Trop. Med. Hyg. 5, 988–999 (1956).

    Article  CAS  PubMed  Google Scholar 

  173. Lwin, M. et al. Infection of mice concurrently with Schistosoma mansoni and rodent malarias: contrasting effects of patent S. mansoni infections on Plasmodium chabaudi, P. yoelii and P. berghei. Ann. Trop. Med. Parasitol. 76, 265–273 (1982).

    Article  CAS  PubMed  Google Scholar 

  174. Abdel-Wahab, M. F. et al. Suppression of schistosome granuloma formation by malaria in mice. Am. J. Trop. Med. Hyg. 23, 915–918 (1974).

    Article  CAS  PubMed  Google Scholar 

  175. Helmby, H., Kullberg, M. & Troye-Blomberg, M. Altered immune responses in mice with concomitant Schistosoma mansoni and Plasmodium chabaudi infections. Infect. Immun. 66, 5167–5174 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yoshida, A. et al. Schistosoma mansoni infection cancels the susceptibility to Plasmodium chabaudi through induction of type 1 immune responses in A/J mice. Int. Immunol. 12, 1117–1125 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Christensen, N. O. et al. Heterologous synergistic interactions in concurrent experimental infection in the mouse with Schistosoma mansoni, Echinostoma revolutum, Plasmodium yoelii, Babesia microti, and Trypanosoma brucei. Parasitol. Res. 74, 544–651 (1988).

    Article  CAS  PubMed  Google Scholar 

  178. Thomas, V. et al. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect. Immun. 69, 3359–3371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zeidner, N. S. et al. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis suppresses IL-2 and IFN-γ production and promotes an IL-4 response in C3H/HeJ mice. Parasite Immunol. 22, 581–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Aaron, L. et al. Tuberculosis in HIV-infected patients: a comprehensive review. Clin. Microbiol. Infect. 10, 388–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Cobb, C. M. et al. TEM/SEM study of the microbial plaque overlying the necrotic gingival papillae of HIV-seropositive, necrotizing ulcerative periodontitis. J. Periodontal Res. 38, 147–155 (2003).

    Article  PubMed  Google Scholar 

  182. Lasker, B. A. et al. Molecular epidemiology of Candida albicans strains isolated from the oropharynx of HIV-positive patients at successive clinic visits. Med. Mycol. 39, 341–352 (2001).

    Article  CAS  PubMed  Google Scholar 

  183. Contreras, A. et al. Relationship between herpesviruses and adult periodontitis and periodontopathic bacteria. J. Periodontol. 70, 478–484 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Contreras, A. & Slots, J. Herpesviruses in human periodontal disease. J. Periodontal Res. 35, 3–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Slots, J. & Contreras, A. Herpesviruses: a unifying causative factor in periodontitis? Oral Microbiol. Immunol. 15, 277–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Fujinami, R. S. et al. Modulation of immune system function by measles virus infection: role of soluble factor and direct infection. J. Virol. 72, 9421–9427 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, M. et al. Modulation of immune system function by measles virus infection. II. Infection of B cells leads to the production of a soluble factor that arrests uninfected B cells in G0/G1 . Viral Immunol. 16, 45–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Wang, M. et al. Manganese superoxide dismutase induction during measles virus infection. J. Med. Virol. 70, 470–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Sun, X. et al. Suppression of antigen-specific T cell proliferation by measles virus infection: role of a soluble factor in suppression. Virology 246, 24–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  190. Verthelyi, D. et al. CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection. J. Immunol. 170, 4717–4723 (2003).

    Article  CAS  PubMed  Google Scholar 

  191. Gormus, B. J. et al. Interactions between Mycobacterium leprae and simian immunodeficiency virus (SIV) in rhesus monkeys. J. Med. Primatol. 29, 259–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. Slifka, M. K. et al. Measles virus infection results in suppression of both innate and adaptive immune responses to secondary bacterial infection. J. Clin. Invest. 111, 805–810 (2003). This paper reviews how virus-induced immunosuppression of both innate and adaptive immune responses can provide an underlying mechanism for bacterial co-infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ehrlich, G. D., Hu, F. Z., Lin, Q., Costerton, J. W. & Post, J. C. Intelligent implants to battle biofilms. ASM News 70, 127 (2004). This paper introduces the concept of one approach to treat or prevent polymicrobial diseases by using bioengineering and nanotechnology to specific anatomic sites and crucial time points in the disease course for intervention and/or prevention.

    Google Scholar 

  194. Kolenbrander, P. E. et al. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66, 486–505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank J. Neelans for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bordetella bronchiseptica

Escherichia coli

Haemophilus somnus

hepatitis A virus

hepatitis B virus

hepatitis D virus

hepatitis G virus

herpes simplex virus type 2

HIV-1

HTLV-2

Neisseria meningitidis

Pasteurella multocida

Plasmodium falciparum

porcine circovirus 2

porcine parvovirus

PRRS virus

Pseudomonas aeruginosa

Streptococcus pneumoniae

Infectious Disease Information

chickenpox

Lyme disease

otitis media

FURTHER INFORMATION

Biofilm movies

ASM Microbial Communities report

ASM conference on polymicrobial diseases

Lauren O. Bakaletz's laboratory

Glossary

VIRAL INTERFERENCE

One virus suppresses the replication of another.

HELPER VIRUS

A virus in a mixed infection that provides a complementing function so that a co-infecting defective virus can replicate.

CHALLENGED

Inoculated with an infectious agent.

SEROCONVERSION

The development of antibodies in serum as a result of infection or immunization.

BACTERIAL CPG DNA

Immunostimulatory bacterial DNA that is enriched in unmethylated CPG dinucleotides.

TURBINATE

A small curved bone along the lateral wall of the nasal passage.

SUBSTRAINS

Genetic variants of a single strain as determined by techniques such as multilocus enzyme electrophoresis or random amplified polymorphic DNA analysis.

BYSTANDER ANTIGENS

Factors that can activate T cells without their specific antigen — without triggering through their T-cell receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakaletz, L. Developing animal models for polymicrobial diseases. Nat Rev Microbiol 2, 552–568 (2004). https://doi.org/10.1038/nrmicro928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing