Key Points
-
Symbiotic interactions that involve microorganisms are widespread, but just how the host and the microorganism come to co-exist is not well understood. The mechanisms that underlie this process are fascinating and have implications for the host–pathogen relationship, as partner choice and pathogen interactions might overlap. Here, the authors use the association between the Hawaiian bobtail squid Euprymna scolopes and the luminous bacterium Vibrio fischeri — studied for more then 15 years — to illustrate the beauty and complexity of horizontally (environmentally) transmitted symbiotic associations.
-
Chance encounters do not precede symbiotic development: the authors review how the host enriches its local environment with the symbiont populations from which newly hatched juvenile hosts will become colonized.
-
After the initial encounter, which can be within a few seconds of the squid-egg hatching, the symbiont is selected from the plethora of microorganisms present, akin to sorting the wheat from the chaff. These processes are reviewed, and include the roles of ciliary currents and mucus in colonization of the nascent squid light organ.
-
Following establishment of the association, Vibrio fischeri induces a series of developmental changes which help transform the host's light organ from one poised to initiate symbiosis to a mature, functional light organ. The changes in the organ are described, together with some of the bacterial factors involved.
-
Host factors might include defence functions, which are activated on encountering a microorganism. The authors include a description of what is known about squid immune functions and the bacterial mutants that have been studied in an attempt to dissect the colonization process. Bacterial phenotypes that affect colonization include motility, oxidative stress defences and lipid synthesis.
-
Finally, the exciting impact of genomics on this partnership is discussed: not only is the Vibrio fischeri genome now complete, an extensive squid EST collection is available. Data mining, together with microarrays, will further our understanding of how this exclusive partnership is established and maintained.
Abstract
Most symbiotic associations between animals and microorganisms are horizontally transmitted — the microorganisms are acquired from the environment by each generation of the host. How are exclusive partnerships established in the context of the thousands of other microbial species that are present in the environment? Similar to winnowing during a harvest, the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri involves a step-wise elimination of potential interlopers that ensures separation of the 'grain' from the 'chaff'.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
McFall-Ngai, M. J. & Ruby, E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal–bacterial symbiosis. Science 254, 1491–1494 (1991).
McFall-Ngai, M. J. & Ruby, E. G. Squids and vibrios: when they first meet. BioScience 48, 257–265 (1998).
McFall-Ngai, M. J. Unseen forces: the influence of bacteria on animal development. Dev. Biol. 242, 1–14 (2002). Discusses the influence of bacteria on invertebrate and vertebrate host development.
Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151–1155 (2004).
Ruby, E. G. Lessons from a cooperative bacterial–animal association: the Vibrio fischeri–Euprymna scolopes light organ symbiosis. Annu. Rev. Microbiol. 50, 591–624 (1996).
Haygood, M. G. Light organ symbioses in fishes. Crit. Rev. Microbiol. 19, 191–216 (1993).
Gros, O., Darrasse, A., Durand, P., Frenkiel, L. & Moueza, M. Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl. Environ. Microbiol. 62, 2324–30 (1996).
Muller-Parker, G. & D'Elia, C. F. in Life and Death of Coral Reefs (ed. Birkeland, C.) 96–113 (Chapman and Hall, New York, 1997).
Ruby, E. G. & Lee, K. H. The Vibrio fischeri–Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64, 805–812 (1998).
Lee, K. -H. & Ruby, E. G. Detection of the light organ symbiont, Vibrio fischeri, in Hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol. 58, 942–947 (1992).
Lee, K. H. & Ruby, E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994). Demonstrated that populations of the squid host dramatically influence the concentration of V. fischeri in the bacterioplankton, which in turn affects the efficiency with which juvenile squid are colonized at hatching.
Boettcher, K. J., Ruby, E. G. & McFall-Ngai, M. J. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179, 65–73 (1996).
Nyholm, S. V. & McFall-Ngai, M. J. Sampling the microenvironment of the Euprymna scolopes light organ: description of a population of host cells with the bacterial symbiont Vibrio fischeri. Biol. Bull. 195, 89–97 (1998).
Ruby, E. G. & Asato, L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993).
McCann, J., Stabb, E. V., Millikan, D. S. & Ruby, E. G. Population effects of Vibrio fischeri during infection of Euprymna scolopes. Appl. Environ. Microbiol. 69, 5928–5934 (2003).
McFall-Ngai, M. J. & Ruby, E. G. Sepiolids and vibrios: when they first meet. BioScience 48, 257–265 (1998).
Montgomery, M. K. & McFall-Ngai, M. J. The effect of bacterial symbionts on early post-embryonic development of a squid light organ. Development 120, 1719–1729 (1994).
Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal–bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000). Provided the first mechanism by which an aquatic animal could harvest relatively scarce symbionts from the environment.
Nyholm, S. V., Deplancke, B., Gaskins, H. R., Apicella, M. A. & McFall-Ngai, M. J. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68, 5113–5122 (2002).
Nyholm, S. V. & McFall-Ngai, M. J. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69, 3932–3937 (2003).
Deloney-Marino, C. R., Wolfe, A. J. & Visick K. L. Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl. Environ. Microbiol. 69, 7527–7530 (2003).
Sonnenberg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nature Immunol. 5, 569–573 (2004). Reviews our knowledge of the microanatomical, molecular and biochemical interactions of beneficial intestinal bacteria and their mammalian hosts.
Salyers, A. A., Pajeau, M. & McCarthy, R. E. Importance of mucopolysaccarides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice. Appl. Environ. Microbiol. 54, 1970–1976 (1988).
Hwa, V. & Salyers, A. A. Analysis of two chondroitin sulfate utilization mutants of Bacteroides thetaiotaomicron that differ in their abilities to compete with the wild type in the gastrointestinal tracts of germfree mice. Appl. Environ. Microbiol. 58, 869–876 (1992).
Davidson, S. K. & McFall-Ngai, M. J. NO means 'yes' in the squid–vibrio symbiosis: the role of nitric oxide in the initiation of a beneficial association. Cell. Microbiol. (in the press).
Weis, V. M., Small, A. L. & McFall-Ngai, M. J. A peroxidase related to the mammalian antimicrobial protein myeloperoxidase in the Euprymna–Vibrio mutualism. Proc. Natl Acad. Sci. USA 93, 13683–13688 (1996).
Small, A. L. & McFall-Ngai, M. J. A halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes. J. Cell. Biochem. 72, 445–457 (1999).
Koropatnick, T., Apicella, M. A. & McFall-Ngai, M. J. Symbiont-induced developmental remodeling of the Euprymna scolopes light organ involves microbial membrane factors and host hemocyte migration. Mol. Biol. Cell. 13, 252a (2002).
Kimbell, J. R. & McFall-Ngai, M. J. Symbiont-induced changes in host actin during the onset of a beneficial animal–bacterial association. Appl. Environ. Microbiol. 70, 1434–1441 (2004).
Lamarcq, L. H. & McFall-Ngai, M. J. Induction of a gradual, reversible morphogenesis of its host's epithelial brush border by Vibrio fischeri. Infect. Immun. 66, 777–785 (1998).
Foster, J. S., Apicella, M. A. & McFall-Ngai, M. J. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226, 242–254 (2000). Demonstrated that bacterial lipopolysaccharide induces apoptosis in a normal developmental programme of an animal–bacterial interaction, not only as part of the cytopathology of a bacterial infection.
Kaufman, M. R., Ikeda, Y., Patton, C., Van Dykhuizen, G. & Epel, D. Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Biol. Bull. 194, 36–43 (1998).
Southward, E. C. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. J. Mar. Biolog. Assoc. UK 68, 465–487 (1988).
Jensen, E. T., Kharazmi, A., Hoiby, N. & Costerton, J. W. Some bacterial parameters influencing the neutrophil oxidative burst response to Pseudomonas aeruginosa biofilms. APMIS 100, 727–733 (1992).
Barbieri, J. T., Riese, M. J. & Aktories, K. Bacterial toxins that modify the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 18, 315–344 (2002).
Fullner, K. J., Lencer, W. I. & Mekalanos, J. J. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect. Immun. 69, 6310–6317 (2001).
Doino, J. A. & McFall-Ngai, M. J. Transient exposure to competent bacteria initiates symbiosis-specific squid light organ morphogenesis. Biol. Bull. 189, 347–355 (1995).
Ruby, E. G. The Euprymna scolopes–Vibrio fischeri symbiosis: a biomedical model for the study of bacterial colonization of animal tissue. J. Mol. Microbiol. Biotech. 1, 13–21 (1999). Compares the colonization determinants of pathogenic and beneficial vibrios, and outlines the genetic tools available in Vibrio fischeri.
Graf, J., Dunlap, P. V. & Ruby, E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986–6991 (1994).
Millikan, D. S. & Ruby, E. G. FlrA, a σ54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185, 3547–3557 (2003).
Millikan, D. S. & Ruby, E. G. Alterations in Vibrio fischeri motility correlate with a delay in symbiosis initiation and are associated with additional symbiotic colonization defects. Appl. Environ. Microbiol. 68, 2519–2528 (2002).
Aeckersberg, F., Lupp, C., Feliciano, B. & Ruby, E. G. Vibrio fischeri outer membrane protein OmpU plays a role in normal symbiotic colonization. J. Bacteriol. 183, 6590–6597 (2001).
Whistler, C. A. & Ruby, E. G. GacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host. J. Bacteriol. 185, 7202–7212 (2003).
Visick, K. L. & Skoufos, L. M. Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183, 835–842 (2001).
Lupp, C., Urbanowski, M., Greenberg, E. P. & Ruby, E. G. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 50, 319–331 (2003).
Fidopiastis, P. M., Miyamoto, C. M., Jobling, M. G., Meighen, E. A. & Ruby, E. G. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol. 45, 131–143 (2002).
Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).
Deloney, C. R., Bartley, T. M. & Visick, K. L. Role for phosphoglucomutase in Vibrio fischeri–Euprymna scolopes symbiosis. J. Bacteriol. 184, 5121–5129 (2002).
Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. J. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000). Showed that luminescence is required for persistence of the bacterial symbiont in the host squid light organ, a requirement that correlates with the ability of the symbiont to induce oedema in host cells with which it directly associates.
Graf, J. & Ruby, E. G. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence, as well as nitrogen utilization. Mol. Microbiol. 37, 168–179 (2000).
Visick, K. L. & Ruby, E. G. The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and approach to stationary phase. J. Bacteriol. 180, 2087–2092 (1998).
Nealson, K. H. & Hastings, J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496–518 (1979).
Byrd, J. C., Yunker, C. K., Xu, Q. S., Sternberg, L. R. & Bresalier, R. S. Inhibition of gastric mucin synthesis by Helicobacter pylori. Gastroenterology 118, 1072–1079 (2000).
Micots, I., Augeron, C., Laboisse, C. L., Muzeau, F. & Megraud, F. Mucin exocytosis: a major target for Helicobacter pylori. J. Clin. Pathol. 46, 241–245 (1993).
Dinwiddle, R. Pathogenesis of lung disease in cystic fibrosis. Respiration 67, 3–8 (2000).
Magor, B. G. & Magor, K. E. Evolution of effectors and receptors of innate immunity. Dev. Comp. Immunol. 25, 651–682 (2001).
Nonaka, M. & Yoshizaki, F. Evolution of the complement system. Mol. Immunol. 40, 897–902 (2004).
Azumi, K. et al. Genomic analysis of immunity in a Urochordate and emergence of the vertebrate immune system: 'waiting for Godot'. Immunogenetics 55, 570–581 (2003).
Douglas, A. E. Symbiotic Interactions (Oxford Science Publications, Oxford, 1994).
Friedrich, A. B. et al. Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar. Biol. 134, 461–470 (1999).
Benayahu, Y. & Schleyer, M. H. Reproduction in Anthelia glauca (Octocorallia: Xeniidae): transmission of algal symbionts during planular brooding. Mar. Biol. 131, 433–442 (1998).
Schwartz, D. A., Krupp, D. A. & Weis, V. M. Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol. Bull. 196, 70–79 (1999).
Harrison, P. L. & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals (Elsevier, Amsterdam, 1990).
Loh, W. K. H., Loi, T., Carter, D. & Hoegh-Guldberg, O. Genetic variability of the symbiotic dinoflagellates from the wide-ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar. Ecol. Prog. Ser. 222, 97–107 (2001).
Cary, S. C., Warren, W., Anderson, E. & Giovannoni, S. J. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol. Mar. Biol. Biotechnol. 2, 51–62 (1993).
Cary, S. C. & Giovannoni, S. J. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc. Natl Acad. Sci. USA 90, 5695–5699 (1993).
Distel, D. L. et al. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol. 170, 2506–2510 (1988).
Won, Y. J. et al. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl. Environ. Microbiol. 69, 6785–6792 (2003).
McFall-Ngai, M. J. Consequences of evolving with bacterial symbionts: insights from the squid–vibrio associations. Annu. Rev. Ecol. Syst. 30, 235–256 (1999).
Grigioni, S., Boucher-Rodoni, R., Demarta, A., Tonolla, M. & Peduzzi, R. Phylogenetic characterization of bacterial symbionts in the accessory nidamental gland of the sepiolid Sepia officnialis Cephalopoda:Decapoda. Mar. Biol. 136, 217–222 (2000).
Barbieri, E. et al. Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo peali (Cephalopoda: Loliginidae). Environ. Microbiol. 3, 151–167 (2001).
Baumann, P., Moran, N. A. & Baumann, L. The evolution and genetics of aphid endosymbionts. BioScience 47, 12–20 (1997).
O'Neil, S. L., Hoffmann, A. A. & Werren, J. H. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction (Oxford University Press, New York, 1997).
Zimmer, C. Wolbachia: a tale of sex and survival. Science 292, 1093–1095 (2001).
Abe, T., Bignell, D. E. & Higashi, M. Termites: Evolution, Sociality, Symbiosis, Ecology (Kluwer Academic, Massachusetts, 2000).
Hooper, L. V. et al. Molecular analysis of commensal host–microbial relationships in the intestine. Science 291, 881–884 (2001).
Russell, J. B. & Rychlik, J. L. Factors that alter rumen ecology. Science 292, 1119–1122 (2001).
Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science 292, 1115–1118 (2001).
Paster, B. et al. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183, 3770–3783 (2001).
Acknowledgements
We thank E. G. Ruby for helpful comments on the manuscript. Work on the squid–Vibrio system is funded by the National Science Foundation, the National Institutes of Health and the W. M. Keck Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
FURTHER INFORMATION
Glossary
- STOCHASTICALLY
-
Random interactions that are not predetermined.
- CHECKPOINT
-
A hurdle imposed by the host that confers greater specificity to the symbiont during colonization.
- ACCOMMODATION MUTANTS
-
Mutants of Vibrio fischeri that colonize the light organ of the host at lower numbers than wild-type symbionts.
Rights and permissions
About this article
Cite this article
Nyholm, S., McFall-Ngai, M. The winnowing: establishing the squid–vibrio symbiosis. Nat Rev Microbiol 2, 632–642 (2004). https://doi.org/10.1038/nrmicro957
Issue Date:
DOI: https://doi.org/10.1038/nrmicro957