Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p

Abstract

Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3′ untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight α-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modest adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the Puf4p RNA binding domain.
Figure 2: Recognition of RNA by the Puf4p RNA binding domain.
Figure 3: Crystal structure of the mutPuf4p–cox17 RNA complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Curtis, D., Lehmann, R. & Zamore, P.D. Translational regulation in development. Cell 81, 171–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Wickens, M., Bernstein, D.S., Kimble, J. & Parker, R.A. PUF family portrait: 3′UTR regulation as a way of life. Trends Genet. 18, 150–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Wharton, R.P. & Aggarwal, A.K. mRNA regulation by Puf domain proteins. Sci. STKE 2006, pe37 (2006).

    Article  PubMed  Google Scholar 

  4. Zhang, B. et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Barker, D.D., Wang, C., Moore, J., Dickinson, L.K. & Lehmann, R. Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev. 6, 2312–2326 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Macdonald, P.M. The Drosophila pumilio gene: an unusually long transcription unit and an unusual protein. Development 114, 221–232 (1992).

    CAS  PubMed  Google Scholar 

  7. Zamore, P.D., Williamson, J.R. & Lehmann, R. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3, 1421–1433 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wharton, R.P., Sonoda, J., Lee, T., Patterson, M. & Murata, Y. The Pumilio RNA-binding domain is also a translational regulator. Mol. Cell 1, 863–872 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Edwards, T.A., Pyle, S.E., Wharton, R.P. & Aggarwal, A.K. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105, 281–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M.T. Modular recognition of RNA by a human Pumilio-homology domain. Cell 110, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X., Zamore, P.D. & Hall, T.M.T. Crystal structure of a Pumilio homology domain. Mol. Cell 7, 855–865 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Opperman, L., Hook, B., DeFino, M., Bernstein, D.S. & Wickens, M. A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nat. Struct. Mol. Biol. 12, 945–951 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ozawa, T., Natori, Y., Sato, M. & Umezawa, Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4, 413–419 (2007).

    CAS  PubMed  Google Scholar 

  14. Cheong, C.-G. & Hall, T.M.T. Engineering RNA sequence specificity of Pumilio repeats. Proc. Natl. Acad. Sci. USA 103, 13635–13639 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gerber, A.P., Herschlag, D. & Brown, P.O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, e79 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hook, B.A., Goldstrohm, A.C., Seay, D.J. & Wickens, M. Two yeast PUF proteins negatively regulate a single mRNA. J. Biol. Chem. 282, 15430–15438 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Herskowitz, I. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol. Rev. 52, 536–553 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tadauchi, T., Matsumoto, K., Herskowitz, I. & Irie, K. Post-transcriptional regulation through the HO 3′-UTR by Mpt5, a yeast homolog of Pumilio and FBF. EMBO J. 20, 552–561 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldstrohm, A.C., Hook, B.A., Seay, D.J. & Wickens, M. PUF proteins bind Pop2p to regulate messenger RNAs. Nat. Struct. Mol. Biol. 13, 533–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olivas, W. & Parker, R. The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast. EMBO J. 19, 6602–6611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, J.S., Jr, Houshmandi, S.S., Lopez Leban, F. & Olivas, W.M. Recruitment of the Puf3 protein to its mRNA target for regulation of mRNA decay in yeast. RNA 10, 1625–1636 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ulbricht, R.J. & Olivas, W.M. Puf1p acts in combination with other yeast Puf proteins to control mRNA stability. RNA 14, 246–262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. White, E.K., Moore-Jarrett, T. & Ruley, H.E. PUM2, a novel murine Puf protein, and its consensus RNA-binding site. RNA 7, 1855–1866 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fox, M., Urano, J. & Reijo Pera, R.A. Identification and characterization of RNA sequences to which human PUMILIO-2 (PUM2) and deleted in Azoospermia-like (DAZL) bind. Genomics 85, 92–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Bernstein, D., Hook, B., Hajarnavis, A., Opperman, L. & Wickens, M. Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. RNA 11, 447–458 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gerber, A.P., Luschnig, S., Krasnow, M.A., Brown, P.O. & Herschlag, D. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 103, 4487–4492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seay, D., Hook, B., Evans, K. & Wickens, M. A three-hybrid screen identifies mRNAs controlled by a regulatory protein. RNA 12, 1594–1600 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  PubMed  Google Scholar 

  30. Terwilliger, T.C. Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D Biol. Crystallogr. 59, 38–44 (2003).

    Article  PubMed  Google Scholar 

  31. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  34. Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. DeLano, W.L. The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA (2002).

    Google Scholar 

Download references

Acknowledgements

We thank K. Adelman and L. Pedersen for critical comments on the manuscript. We are grateful to A. Sigova of the University of Massachusetts Medical School for the yeast genomic DNA, A. Clark for advice on purifying yeast genomic DNA, J. Holmes for technical assistance, L. Pedersen for crystallography support and D. Esposito of the Protein Expression Lab, NCI-Frederick, for the pDEST-565 plasmid. This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences. The Advanced Photon Source used for this study was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38. We thank Z. Jin for collecting these data at SER-CAT as part of the mail-in crystallography program.

Author information

Authors and Affiliations

Authors

Contributions

J.J.H., M.T.M. and T.M.T.H. designed the experiments; J.J.H. crystallized native Puf4p; M.T.M. determined the structures of native and mutant Puf4p and performed the RNA binding analyses; M.T.M. and T.M.T.H. prepared the manuscript.

Corresponding author

Correspondence to Traci M Tanaka Hall.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M., Higgin, J. & Tanaka Hall, T. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p. Nat Struct Mol Biol 15, 397–402 (2008). https://doi.org/10.1038/nsmb.1390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1390

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing