Abstract
Expression of Snail transcriptional factor is a determinant in the acquisition of a mesenchymal phenotype by epithelial tumor cells. However, the regulation of the transcription of this gene is still unknown. We describe here the characterization of a human SNAIL promoter that contains the initiation of transcription and regulates the expression of this gene in tumor cells. This promoter was activated in cell lines in response to agents that induce Snail transcription and the mesenchymal phenotype, as addition of the phorbol ester PMA or overexpression of integrin-linked kinase (ILK) or oncogenes such as Ha-ras or v-Akt. Although other regions of the promoter were required for a complete stimulation by Akt or ILK, a minimal fragment (−78/+59) was sufficient to maintain the mesenchymal specificity. Activity of this minimal promoter and SNAIL RNA levels were dependent on ERK signaling pathway. NFκB/p65 also stimulated SNAIL transcription through a region located immediately upstream the minimal promoter, between −194 and −78. These results indicate that Snail transcription is driven by signaling pathways known to induce epithelial to mesenchymal transition, reinforcing the role of Snail in this process.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
265,23 € per year
only 5,30 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Ajenjo N, Aaronson DS, Cevallos E, Richard C, Leon J and Crespo P . (2000). J. Biol. Chem., 275, 7189–7197.
Bates RC and Mercurio AM . (2003). Mol. Biol. Cell, 14, 1790–1800.
Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J and García de Herreros A . (2000). Nat. Cell Biol., 2, 84–89.
Batlle E, Verdú J, Domínguez D, Llosas MM, Díaz V, Loukili N, Paciucci R, Alameda F and García de Herreros A . (1998). J. Biol. Chem., 273, 15091–15098.
Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F and Nieto MA . (2000). Nat. Cell Biol., 2, 78–83.
Carver EA, Rulang J, Lan Y, Oram KF and Gridley T . (2001). Mol. Cell. Biol., 21, 8184–8188.
Ciruna B and Rossant J . (2001). Dev. Cell, 1, 37–49.
Comijn J, Berx G, Vermassen P, Verschuren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroek D and van Roy F . (2001). Mol. Cell, 7, 1267–1278.
Conacci-Sorrell M, Simca I, BenYedida T, Blechman J, Savagner P and Ben-Ze'ev A . (2003). J. Cell. Biol., 163, 847–857.
Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T and Gutkind JS . (1995). Cell, 81, 1137–1146.
Christen B and Slack J . (1999). Development, 126, 119–125.
Domínguez D, Montserrat-Sentís B, Virgós-Soler A, Guaita S, Grueso J, Porta M, Puig I, Baulida J, Francí C and García de Herreros A . (2003). Mol. Cell. Biol., 23, 5078–5089.
Ellenrieder V, Gendler S, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G and Gress TM . (2001). Cancer Res., 61, 4222–4228.
Fambrough D, McClure K, Kazlauskas A and Lander ES . (1999). Cell, 97, 727–741.
Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS and Wade PA . (2003). Cell, 113, 207–219.
Gotzmann J, Huber H, Thallinger C, Wolschek M, Jansen B, Schulte-Hermann R, Beug H and Mikulitis W . (2002). J. Cell Sci., 115, 1189–1202.
Grande M, Franzen A, Karlsson O, Ericsson LE, Heldin NE and Nilsson M . (2002). J. Cell Sci., 115, 4227–4236.
Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, Van Roy F, Lee-Kwon W, Donowitz M, Tsichlis PN and Larue L . (2003). Cancer Res., 63, 2172–2178.
Grooteclaes M and Frisch SM . (2000). Oncogene, 19, 3823–3828.
Guaita S, Puig I, Franci C, Garrido M, Domínguez D, Batlle E, Sancho E, Dedhar S, Garcia de Herreros A and Baulida J . (2002). J. Biol. Chem., 277, 30209–39216.
Hajra KM, Chen DY and Fearon ER . (2002). Cancer Res., 62, 1613–1618.
Ip YT, Park RE, Kosman D, Yazdanbakhsh K and Levine M . (1992). Genes Dev., 6, 1518–1530.
Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H and Grünert S . (2002). J. Cell Biol., 156, 299–313.
Locascio A, Vega S, de Frutos CA, Manzanares M and Nieto MA . (2002). J. Biol. Chem., 277, 38803–38809.
Mayor R, Essex LJ, Bennett MF and Sargent MG . (1993). Development, 119, 661–671.
Nieto MA . (2002). Nat. Rev. Mol. Cell Biol., 3, 155–166.
Novak A, Hsu S, Leung-Hagsteijn CY, Radeva G, Papkoff J, Montesano R, Roskelly C, Grosschedl R and Dedhar S . (1998). Proc. Natl. Acad. Sci. USA, 95, 4374–4379.
Paznekas WA, Okajima K, Schertzer M, Wood S and Jabs EW . (1999). Genomics, 62, 42–49.
Peinado H, Quintanilla M and Cano A . (2003). J. Biol. Chem., 278, 21113–21123.
Pérez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA and Cano A . (2001). J. Biol. Chem., 276, 27424–27431.
Poser I, Dominguez D, García de Herreros A, Varnai A, Buettner R and Bosserhoff AK . (2001). J. Biol. Chem., 276, 24661–24666.
Spagnoli FM, Cicchino C, Tripodi M and Weiss MC . (2000). J. Cell Sci., 113, 3639–3647.
Tan C, Costello P, Sanghera J, Domínguez D, Baulida J, García de Herreros A and Dedhar S . (2001). Oncogene, 20, 133–140.
Thiery JP . (2002). Nat. Rev. Cancer, 2, 442–454.
Vleminckx K and Kemler R . (1999). BioEssays, 21, 211–220.
Yáñez-Mo M, Lara-Pezzi E, Selgas R, Ramírez-Huesca M, Domínguez-Jiménez C, Jiménez-Heffernan JA, Aguilera A, Sánchez-Tornero JA, Bajo MA, lvarez V, Castro MA, del Peso G, Cirujeda A, Gamallo C, Sánchez-Madrid F and López-Cabrera M . (2003). N Engl. J. Med., 348, 403–413.
Yao Y, Wu J, Germann U, Su MSS, Kuida K and Boucher D . (2003). Proc. Natl. Acad. Sci. USA, 100, 12759–12764.
Acknowledgements
This work was supported by Grants from Fundación Científica de la Asociación Española contra el Cáncer and Ministerio de Ciencia y Tecnología (PM99-0132 and SAF2003-02324) to AGH and by a grant from FEGEFLUC to LL. Partial support from a grant from Instituto Carlos III (RTICCC, C03710) is also appreciated. We thank Drs C Caelles, M Fresno, P Crespo, HG Pálmer and F Posas for the reagents. SG and IP are recipients of predoctoral fellowships from Ministerio de Ciencia y Tecnología and Ministerio de Educación, respectively. DD was a fellow from Instituto de Salud Carlos III. We are grateful to Dr Eduard Batlle for his initial work on the isolation of the promoter. The technical support of Judit Grueso is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barberà, M., Puig, I., Domínguez, D. et al. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23, 7345–7354 (2004). https://doi.org/10.1038/sj.onc.1207990
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.onc.1207990
Keywords
This article is cited by
-
Decidual stromal cells-derived exosomes incurred insufficient migration and invasion of trophoblast by disturbing of β-TrCP-mediated snail ubiquitination and degradation in unexplained recurrent spontaneous abortion
European Journal of Medical Research (2024)
-
Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations
Folia Microbiologica (2024)
-
Partitioning defective 6 homolog alpha (PARD6A) promotes epithelial–mesenchymal transition via integrin β1-ILK-SNAIL1 pathway in ovarian cancer
Cell Death & Disease (2022)
-
Arachidonic acid drives adaptive responses to chemotherapy-induced stress in malignant mesothelioma
Journal of Experimental & Clinical Cancer Research (2021)
-
Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7
Cell Death & Disease (2021)