Abstract
In nontumorigenic mammary epithelial cells (EpH4), transforming growth factor-β (TGFβ1) causes cell cycle arrest/apoptosis, but induces epitheliomesenchymal transition (EMT) in Ha-Ras-transformed EpH4 cells (EpRas). EMT is closely correlated with late-stage tumor progression and results in fibroblastic, migratory cells displaying a mesenchymal gene expression program (FibRas). EpRas and FibRas cells showed strongly increased cell substrate adhesion to fibronectin, collagens I/IV and laminin 1. Furthermore, Ras transformation caused enhanced or de-novo expression of the integrin subunits β1, α2 and α3, or α5 and α6, respectively, the latter subunits being even more strongly expressed in FibRas cells. Importantly, polarized EpRas cells expressed integrin subunits β1 and α6 at distinct (apical and lateral) membrane domains, while FibRas cells coexpressed these integrins and α5 at the entire plasma membrane. During EMT, EpRas cells formed an α5β1 complex and deposited its ligand fibronectin into the extracellular matrix. Function-blocking α5 antibodies attenuated migration, and caused massive apoptosis in EpRas cells undergoing TGFβ1-induced EMT in collagen gels, but failed to affect EpRas- or FibRas-derived structures. We conclude that functional α5β1 integrin is centrally implicated in EMT induction. Importantly, FibRas cells also failed to deposit the α6β4 ligand laminin 5, suggesting that α6β4 is no longer functional after EMT and replaced by mesenchymal integrins such as α5β1.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
265,23 € per year
only 5,30 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Aberdam D, Aguzzi A, Baudoin C, Galliano MF, Ortonne JP and Meneguzzi G . (1994). Cell Adhes. Commun., 2, 115–129.
Birchmeier C, Birchmeier W and Brand-Saberi B . (1996). Acta Anat. (Basel), 156, 217–226.
Bogenrieder T and Herlyn M . (2003). Oncogene, 22, 6524–6536.
Defilippi P, Olivo C, Tarone G, Mancini P, Torrisi MR and Eva A . (1997). Oncogene, 14, 1933–1943.
Defilippi P, van Hinsbergh V, Bertolotto A, Rossino P, Silengo L and Tarone G . (1991). J. Cell Biol., 114, 855–863.
Frisch SM and Ruoslahti E . (1997). Curr. Opin. Cell Biol., 9, 701–706.
Grünert S, Jechlinger M and Beug Hec . (2003). Nat. Rev. Mol. Cell. Biol., 4, 657–665.
Harabayashi T, Kanai Y, Yamada T, Sakamoto M, Ochiai A, Kakizoe T, Koyanagi T and Hirohashi S . (1999). J. Urol., 161, 1364–1371.
Henning K, Berndt A, Katenkamp D and Kosmehl H . (1999). Histopathology, 34, 305–309.
Hood JD and Cheresh DA . (2002). Nat. Rev. Cancer, 2, 91–100.
Howe A, Aplin AE, Alahari SK and Juliano RL . (1998). Curr. Opin. Cell Biol., 10, 220–231.
Hynes RO . (2002). Cell, 110, 673–687.
Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H and Grunert S . (2002). J. Cell Biol., 156, 299–313.
Juhasz I, Murphy GF, Yan HC, Herlyn M and Albelda SM . (1993). Am. J. Pathol., 143, 1458–1469.
Maschler S, Grünert S, Danielopol S, Beug H and Wirl G . (2004). Oncogene, 23, 3622–3633.
Miller KA, Eklund EA, Peddinghaus ML, Cao Z, Fernandes N, Turk PW, Thimmapaya B and Weitzman SA . (2001). J. Biol. Chem., 276, 42863–42868.
O'Connor KL, Shaw LM and Mercurio AM . (1998). J. Cell Biol., 143, 1749–1760.
Oft M, Heider KH and Beug H . (1998). Curr. Biol., 8, 1243–1252.
Oft M, Peli J, Rudaz C, Schwarz H, Beug H and Reichmann E . (1996). Genes Dev., 10, 2462–2477.
Palecek SP, Schmidt CE, Lauffenburger DA and Horwitz AF . (1996). J. Cell Sci., 109 (Part 5), 941–952.
Pellegrini G, De Luca M, Orecchia G, Balzac F, Cremona O, Savoia P, Cancedda R and Marchisio PC . (1992). J. Clin. Invest., 89, 1783–1795.
Putz E, Witter K, Offner S, Stosiek P, Zippelius A, Johnson J, Zahn R, Riethmuller G and Pantel K . (1999). Cancer Res., 59, 241–248.
Rabinovitz I and Mercurio AM . (1997). J. Cell Biol., 139, 1873–1884.
Reeves R, Edberg DD and Li Y . (2001). Mol. Cell. Biol., 21, 575–594.
Saulnier R, Bhardwaj B, Klassen J, Leopold D, Rahimi N, Tremblay E, Mosher D and Elliott B . (1996). Exp. Cell Res., 222, 360–369.
Schwartz MA . (1997). J. Cell Biol., 139, 575–578.
Schwarzbauer JE and Sechler JL . (1999). Curr. Opin. Cell Biol., 11, 622–627.
Sheppard D . (1996). Bioessays, 18, 655–660.
Streuli CH, Schmidhauser C, Kobrin M, Bissell MJ and Derynck R . (1993). J. Cell Biol., 120, 253–260.
Thiery JP . (2002). Nat. Rev. Cancer, 2, 442–454.
van der Flier A and Sonnenberg A . (2001). Cell Tissue Res., 305, 285–298.
Wang F, Hansen RK, Radisky D, Yoneda T, Barcellos-Hoff MH, Petersen OW, Turley EA and Bissell MJ . (2002). J. Natl. Cancer Inst., 94, 1494–1503.
Weaver VM, Lelievre S, Lakins JN, Chrenek MA, Jones JC, Giancotti F, Werb Z and Bissell MJ . (2002). Cancer Cell, 2, 205–216.
Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C and Bissell MJ . (1997). J. Cell Biol., 137, 231–245.
Wirl G, Hermann M, Ekblom P and Fassler R . (1995). J. Cell Sci., 108 (Part 6), 2445–2456.
Witkowski CM, Bowden GT, Nagle RB and Cress AE . (2000). Carcinogenesis, 21, 325–330.
Zambruno G, Marchisio PC, Marconi A, Vaschieri C, Melchiori A, Giannetti A and De Luca M . (1995). J. Cell Biol., 129, 853–865.
Zuk A and Hay ED . (1994). Dev. Dyn., 201, 378–393.
Acknowledgements
We are thankful to Stefan Grünert for the Ha-Ras effector loop mutants expressing V12S35 and V12C40 EpH4 cells. We are grateful to Curzio Rüegg for stimulating discussions and critical reading of the manuscript. This work was funded by grants from the Swiss Cancer League and the Swiss National Science Foundation to ER and from the FWF to HB (SFB-006). S Maschler received a DOC fellowship of the Austrian Academy of Sciences (No. 20968).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maschler, S., Wirl, G., Spring, H. et al. Tumor cell invasiveness correlates with changes in integrin expression and localization. Oncogene 24, 2032–2041 (2005). https://doi.org/10.1038/sj.onc.1208423
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.onc.1208423
Keywords
This article is cited by
-
Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma
Nature Communications (2023)
-
Canonical TGFβ signaling induces collective invasion in colorectal carcinogenesis through a Snail1- and Zeb1-independent partial EMT
Oncogene (2022)
-
Integrin alpha-2 and beta-1 expression increases through multiple generations of the EDW01 patient-derived xenograft model of breast cancer—insight into their role in epithelial mesenchymal transition in vivo gained from an in vitro model system
Breast Cancer Research (2020)
-
Loss of Neogenin1 in human colorectal carcinoma cells causes a partial EMT and wound-healing response
Scientific Reports (2019)
-
MAP2K1 is a potential therapeutic target in erlotinib resistant head and neck squamous cell carcinoma
Scientific Reports (2019)