Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of HIV latency during thymopoiesis

Abstract

The use of combination antiretroviral therapy results in a substantial reduction in viremia, a rebound of CD4+ T cells and increased survival for HIV-infected individuals. However, this treatment does not result in the total eradication of HIV. Rather, the virus is thought to remain latent in a subset of cells, where it avoids elimination by the immune system. In this state the virus is capable of reactivation of productive infection following cessation of therapy. These latently infected cells are very few in number and it has thus been difficult to determine their origin and to study the molecular nature of the latent viral genome. HIV replication is linked to cellular gene transcription and requires target cell activation. Therefore, should an activated, infected cell become transcriptionally inactive prior to cytopathic effects, the viral genome might be maintained in a latent state. We used the SCID-hu (Thy/Liv) mouse model to establish that activation-inducible HIV can be generated at high frequency during thymopoiesis, a process where previously activated cells mature towards quiescence. Moreover, we showed that these cells can be exported into the periphery where the virus remains latent until T-cell receptor stimulation, indicating that the thymus might be a source of latent HIV in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation status of thymocyte subsets.
Figure 2: Latent HIV in mature thymocytes from SCID-hu mice.
Figure 3: Molecular analysis of latent HIV in SCID-hu thymocytes and the effect of cytokines on reactivation.
Figure 4: HIV latency in the periphery.

Similar content being viewed by others

References

  1. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  Google Scholar 

  2. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    Article  CAS  Google Scholar 

  3. Chun, T.W. et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94, 13193–13197 (1997).

    Article  CAS  Google Scholar 

  4. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  Google Scholar 

  5. Wong, J.K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).

    Article  CAS  Google Scholar 

  6. Chun, T.W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997).

    Article  CAS  Google Scholar 

  7. Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med. 5, 512–517 (1999).

    Article  CAS  Google Scholar 

  8. Chun, T.W. et al. Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 95, 8869–8873 (1998).

    Article  CAS  Google Scholar 

  9. Persaud, D. et al. A stable latent reservoir for HIV-1 in resting CD4(+) T lymphocytes in infected children. J. Clin. Invest. 105, 995–1003 (2000).

    Article  CAS  Google Scholar 

  10. Furtado, M.R. et al. Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. New Engl. J. Med. 340, 1614–1622 (1999).

    Article  CAS  Google Scholar 

  11. Zhang, L. et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. New Engl. J. Med. 340, 1605–1613 (1999).

    Article  CAS  Google Scholar 

  12. Sharkey, M.E. et al. Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy. Nature Med. 6, 76–81 (2000).

    Article  CAS  Google Scholar 

  13. Zack, J.A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990).

    Article  CAS  Google Scholar 

  14. Bukrinsky, M.I., Stanwick, T.L., Dempsey, M.P. & Stevenson, M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254, 423–427 (1991).

    Article  CAS  Google Scholar 

  15. Chun, T.W. et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nature Medicine 1, 1284–1290 (1995).

    Article  CAS  Google Scholar 

  16. Pierson, T. et al. Characterization of chemokine receptor utilization of viruses in the latent reservoir for human immunodeficiency virus type 1. J. Virol. 74, 7824–7833 (2000).

    Article  CAS  Google Scholar 

  17. Kitchen, S.G. & Zack, J.A. CXCR4 expression during lymphopoiesis: implications for human immunodeficiency virus type 1 infection of the thymus. J. Virol. 71, 6928–6934 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Berkowitz, R.D., Beckerman, K.P., Schall, T.J. & McCune, J.M. CXCR4 and CCR5 expression delineates targets for HIV-1 disruption of T cell differentiation. J. Immunol. 161, 3702–3710 (1998).

    CAS  PubMed  Google Scholar 

  19. Pedroza-Martins, L., Gurney, K.B., Torbett, B.E. & Uittenbogaart, C.H. Differential tropism and replication kinetics of human immunodeficiency virus type 1 isolates in thymocytes: Coreceptor expression allows viral entry, but productive infection of distinct subsets is determined at the postentry level. J. Virol. 72, 9441–9452 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Papiernik, M. et al. Thymic abnormalities in fetuses aborted from human immunodeficiency virus type 1 seropositive women. Pediatrics 89, 297–301 (1992).

    CAS  PubMed  Google Scholar 

  21. Aldrovandi, G.M. et al. The SCID-hu mouse as a model for HIV-1 infection. Nature 363, 732–736 (1993).

    Article  CAS  Google Scholar 

  22. Bonyhadi, M.L. et al. HIV induces thymus depletion in vivo. Nature 363, 728–732 (1993).

    Article  CAS  Google Scholar 

  23. Stanley, S.K. et al. Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J. Exp. Med. 178, 1151–1163 (1993).

    Article  CAS  Google Scholar 

  24. Kollmann, T.R. et al. Disseminated human immunodeficiency virus 1 (HIV-1) infection in SCID-hu mice after peripheral inoculation with HIV-1. J. Exp. Med. 179, 513–522 (1994).

    Article  CAS  Google Scholar 

  25. Jamieson, B.D. & Zack, J.A. In vivo pathogenesis of a human immunodeficiency virus type 1 reporter virus. J. Virol. 72, 6520–6526 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Korin, Y.D. & Zack, J.A. Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J. Virol. 73, 6526–6532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jamieson, B.D., Pang, S., Aldrovandi, G.M., Zha, J. & Zack, J.A. In vivo pathogenic properties of two clonal human immunodeficiency virus type 1 isolates. J. Virol. 69, 6259–6264 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zack, J.A., Haislip, A.M., Krogstad, P. & Chen, I.S. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J. Virol. 66, 1717–1725 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chun, T.W., Engel, D., Mizell, S.B., Ehler, L.A. & Fauci, A.S. Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J. Exp. Med. 188, 83–91 (1998); erratum: 188, 614 (1998).

    Article  CAS  Google Scholar 

  30. Livingstone, W.J., Moore, M., Innes, D., Bell, J.E. & Simmonds, P. Frequent infection of peripheral blood CD8-positive T-lymphocytes with HIV-1. Edinburgh Heterosexual Transmission Study Group. Lancet 348, 649–654 (1996).

    Article  CAS  Google Scholar 

  31. Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357 (1999).

    Article  CAS  Google Scholar 

  32. Unutmaz, D., KewalRamani, V.N., Marmon, S. & Littman, D.R. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 189, 1735–1746 (1999).

    Article  CAS  Google Scholar 

  33. Schmid, I., Cole, S.W., Korin, Y.D., Zack, J.A. & Giorgi, J.V. Detection of cell cycle subcompartments by flow cytometric estimation of DNA-RNA content in combination with dual-color immunofluorescence. Cytometry 39, 108–116 (2000).

    Article  CAS  Google Scholar 

  34. Meyers, L.E., McQuay, L.J. & Hollinger, F.B. Dilution assay statistics. Journal of Clinical Microbiology 32, 732–739 (1994).

    Google Scholar 

  35. Arrigo, S.J., Weitsman, S., Rosenblatt, J.D. & Chen, I.S. Analysis of rev gene function on human immunodeficiency virus type 1 replication in lymphoid cells by using a quantitative polymerase chain reaction method. J. Virol. 63, 4875–4881 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I.S.Y. Chen and T.M. Folks for critical reviews of this manuscript and G. Bristol, R. Cortado and A. Kacena for technical assistance. This work was supported by NIH grants #AI 36554 and AI 36059, and the UCLA CFAR. J.A.Z. is an Elizabeth Glaser scientist supported by the Pediatric AIDS Foundation. S.G.K. is a recipient of the UCLA Center for Clinical AIDS Research and Education HIV Pathogenesis Institutional Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome A. Zack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, D., Kitchen, S., Kitchen, C. et al. Generation of HIV latency during thymopoiesis. Nat Med 7, 459–464 (2001). https://doi.org/10.1038/86531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86531

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing