Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The impact of hypertension on leukocyte telomere length: a systematic review and meta-analysis of human studies

Abstract

Shortened leukocyte telomere length (LTL) is a novel biomarker for age and age-related diseases. Several epidemiological studies have examined the association between telomere length in surrogate tissues (for example, blood cells) and hypertension, and meanwhile the majority of studies reported an association some individual studies do not. We carried out a systematic review and meta-analysis to address the hypothesis that, in humans, telomere length is related with hypertension. Searches were conducted in Pubmed by September 2015 and reference lists of retrieved citations were hand searched. Eligible studies measured telomeres for both hypertensive and normotensive subjects. No restrictions were placed on sample size, publication type, age or gender. We calculated summary estimates using fixed and random effects meta-analysis. Publication bias and heterogeneity among studies were further tested. Meta-analyses from 3097 participants (1415 patients with hypertension and 1682 control subjects) showed a significant standardized mean difference between LTL in hypertensive patients and controls, either in the fixed (P<5 × 10−6) or the random model (P<0.005). Heterogeneity among studies was substantial (Q-statistic P-value <0.001, I2 97.73%). Sensitivity analysis indicated that no single study changed the standardized mean difference qualitatively (0.022> random model P-value >0.002). Egger’s test for asymmetry of effect sizes (intercept±s.e.=−7.278±3.574; P=0.072) did not show evidence for strong study publication bias. Leukocyte telomeres may be shorter in hypertensive than in normotensive individuals. Larger studies controlling for confounder effects are needed to confirm these findings and further explore sources of heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Balk B, Maicher A, Dees M, Klermund J, Luke-Glaser S, Bender K et al. Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 2013; 20 (10): 1199–1205.

    Article  CAS  Google Scholar 

  2. Stewart SA, Ben-Porath I, Carey VJ, O'Connor BF, Hahn WC, Weinberg RA . Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 2003; 33 (4): 492–496.

    Article  CAS  Google Scholar 

  3. Houben JM, Moonen HJ, van Schooten FJ, Hageman GJ . Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med 2008; 44 (3): 235–246.

    Article  CAS  Google Scholar 

  4. Muezzinler A, Zaineddin AK, Brenner H . Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obes Rev 2014; 15 (3): 192–201.

    Article  CAS  Google Scholar 

  5. Hunt SC, Kark JD, Aviv A . Association between shortened leukocyte telomere length and cardio-metabolic outcomes. Circ Cardiovasc Genet 2015; 8 (1): 4–7.

    Article  Google Scholar 

  6. Zhao J, Miao K, Wang H, Ding H, Wang DW . Association between telomere length and type 2 diabetes mellitus: a meta-analysis. PLoS ONE 2013; 8 (11): e79993.

    Article  Google Scholar 

  7. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P . Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 2014; 349: g4227.

    Article  Google Scholar 

  8. Willeit P, Raschenberger J, Heydon EE, Tsimikas S, Haun M, Mayr A et al. Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLoS ONE 2014; 9 (11): e112483.

    Article  Google Scholar 

  9. Fyhrquist F, Saijonmaa O . Telomere length and cardiovascular aging. Ann Med 2012; 44 (Suppl 1): S138–S142.

    Article  CAS  Google Scholar 

  10. Brandes RP, Fleming I, Busse R . Endothelial aging. Cardiovasc Res 2005; 66 (2): 286–294.

    Article  CAS  Google Scholar 

  11. Fuster JJ, Diez J, Andres V . Telomere dysfunction in hypertension. J Hypertens 2007; 25 (11): 2185–2192.

    Article  CAS  Google Scholar 

  12. Aviv H, Khan MY, Skurnick J, Okuda K, Kimura M, Gardner J et al. Age dependent aneuploidy and telomere length of the human vascular endothelium. Atherosclerosis 2001; 159 (2): 281–287.

    Article  CAS  Google Scholar 

  13. Aviv A . Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res 2012; 730 (1-2): 68–74.

    Article  CAS  Google Scholar 

  14. Benetos A, Gardner JP, Zureik M, Labat C, Xiaobin L, Adamopoulos C et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension 2004; 43 (2): 182–185.

    Article  CAS  Google Scholar 

  15. Donato AJ, Morgan RG, Walker AE, Lesniewski LA . Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 2015; 89 (Pt B): 122–135.

    Article  CAS  Google Scholar 

  16. Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A . Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 2000; 36 (2): 195–200.

    Article  CAS  Google Scholar 

  17. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001; 37 (2 Pt 2): 381–385.

    Article  CAS  Google Scholar 

  18. Demissie S, Levy D, Benjamin EJ, Cupples LA, Gardner JP, Herbert A et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 2006; 5 (4): 325–330.

    Article  CAS  Google Scholar 

  19. Farrag W, Eid M, El-Shazly S, Abdallah M . Angiotensin II type 1 receptor gene polymorphism and telomere shortening in essential hypertension. Mol Cell Biochem 2011; 351 (1-2): 13–18.

    Article  CAS  Google Scholar 

  20. Lung FW, Ku CS, Kao WT . Telomere length may be associated with hypertension. J Hum Hypertens 2008; 22 (3): 230–232.

    Article  Google Scholar 

  21. Zhang DH, Wen XM, Zhang L, Cui W . DNA methylation of human telomerase reverse transcriptase associated with leukocyte telomere length shortening in hyperhomocysteinemia-type hypertension in humans and in a rat model. Circ J 2014; 78 (8): 1915–1923.

    Article  CAS  Google Scholar 

  22. Bhupatiraju C, Saini D, Patkar S, Deepak P, Das B, Padma T . Association of shorter telomere length with essential hypertension in Indian population. Am J Hum Biol 2012; 24 (4): 573–578.

    Article  Google Scholar 

  23. Das B, Pawar N, Saini D, Seshadri M . Genetic association study of selected candidate genes (ApoB, LPL, Leptin) and telomere length in obese and hypertensive individuals. BMC Med Genet 2009; 10: 99.

    Article  Google Scholar 

  24. Yang Z, Huang X, Jiang H, Zhang Y, Liu H, Qin C et al. Short telomeres and prognosis of hypertension in a chinese population. Hypertension 2009; 53 (4): 639–645.

    Article  CAS  Google Scholar 

  25. Bekaert S, De MT, Rietzschel ER, De Buyzere ML, De BD, Langlois M et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 2007; 6 (5): 639–647.

    Article  CAS  Google Scholar 

  26. Kuznetsova T, Codd V, Brouilette S, Thijs L, Gonzalez A, Jin Y et al. Association between left ventricular mass and telomere length in a population study. Am J Epidemiol 2010; 172 (4): 440–450.

    Article  Google Scholar 

  27. Russo A, Palumbo L, Fornengo C, Di GC, Ricceri F, Guarrera S et al. Telomere length variation in juvenile acute myocardial infarction. PLoS ONE 2012; 7 (11): e49206.

    Article  CAS  Google Scholar 

  28. Ma L, Li Y, Wang J . Telomeres and essential hypertension. Clin Biochem 2015; 48 (16-17): 1195–1199.

    Article  CAS  Google Scholar 

  29. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283 (15): 2008–2012.

    Article  CAS  Google Scholar 

  30. Moher D, Liberati A, Tetzlaff J, Altman DG . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151 (4): 264–269 W64.

    Article  Google Scholar 

  31. Wells GA, Shea B, O'connell D, Peterson J, Welch V, Losos M et al The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2011. URL: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed September 2015.

  32. Baragetti A, Palmen J, Garlaschelli K, Grigore L, Pellegatta F, Tragni E et al. Telomere shortening over 6 years is associated with increased subclinical carotid vascular damage and worse cardiovascular prognosis in the general population. J Intern Med 2015; 277 (4): 478–487.

    Article  CAS  Google Scholar 

  33. Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C et al. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc 2014; 62 (2): 222–229.

    Article  Google Scholar 

  34. Tentolouris N, Nzietchueng R, Cattan V, Poitevin G, Lacolley P, Papazafiropoulou A et al. White blood cells telomere length is shorter in males with type 2 diabetes and microalbuminuria. Diabetes Care 2007; 30 (11): 2909–2915.

    Article  CAS  Google Scholar 

  35. Adaikalakoteswari A, Balasubramanyam M, Mohan V . Telomere shortening occurs in Asian Indian Type 2 diabetic patients. Diabet Med 2005; 22 (9): 1151–1156.

    Article  CAS  Google Scholar 

  36. Nilsson PM, Tufvesson H, Leosdottir M, Melander O . Telomeres and cardiovascular disease risk: an update 2013. Transl Res 2013; 162 (6): 371–380.

    Article  CAS  Google Scholar 

  37. Aulinas A, Ramirez MJ, Barahona MJ, Valassi E, Resmini E, Mato E et al. Dyslipidemia and chronic inflammation markers are correlated with telomere length shortening in Cushing's syndrome. PLoS ONE 2015; 10 (3): e0120185.

    Article  Google Scholar 

  38. Fitzpatrick AL, Kronmal RA, Kimura M, Gardner JP, Psaty BM, Jenny NS et al. Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2011; 66 (4): 421–429.

    Article  Google Scholar 

  39. Aviv A, Hunt SC, Lin J, Cao X, Kimura M, Blackburn E . Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res 2011; 39 (20): e134.

    Article  CAS  Google Scholar 

  40. Needham BL, Adler N, Gregorich S, Rehkopf D, Lin J, Blackburn EH et al. Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999-2002. Soc Sci Med 2013; 85: 1–8.

    Article  Google Scholar 

  41. Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D et al. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol 2014; 51: 15–27.

    Article  CAS  Google Scholar 

  42. Aviv A . Leukocyte telomere length, hypertension, and atherosclerosis: are there potential mechanistic explanations? Hypertension 2009; 53 (4): 590–591.

    Article  CAS  Google Scholar 

  43. Wilson WR, Herbert KE, Mistry Y, Stevens SE, Patel HR, Hastings RA et al. Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J 2008; 29 (21): 2689–2694.

    Article  CAS  Google Scholar 

  44. Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U . Telomere length in different tissues of elderly patients. Mech Ageing Dev 2000; 119 (3): 89–99.

    Article  CAS  Google Scholar 

  45. Takubo K, Izumiyama-Shimomura N, Honma N, Sawabe M, Arai T, Kato M et al. Telomere lengths are characteristic in each human individual. Exp Gerontol 2002; 37 (4): 523–531.

    Article  CAS  Google Scholar 

  46. Nzietchueng R, Elfarra M, Nloga J, Labat C, Carteaux JP, Maureira P et al. Telomere length in vascular tissues from patients with atherosclerotic disease. J Nutr Health Aging 2011; 15 (2): 153–156.

    Article  CAS  Google Scholar 

  47. Chang E, Harley CB . Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 1995; 92 (24): 11190–11194.

    Article  CAS  Google Scholar 

  48. Aviv A, Kark JD, Susser E . Telomeres, atherosclerosis, and human longevity: a causal hypothesis. Epidemiology 2015; 26 (3): 295–299.

    Article  Google Scholar 

  49. Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 2006; 99 (2): 156–164.

    Article  CAS  Google Scholar 

  50. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 2007; 165 (1): 14–21.

    Article  Google Scholar 

  51. Fyhrquist F, Saijonmaa O, Strandberg T . The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 2013; 10 (5): 274–283.

    Article  CAS  Google Scholar 

  52. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 2007; 369 (9556): 107–114.

    Article  CAS  Google Scholar 

  53. Giannotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, Horvath T et al. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension 2010; 55 (6): 1389–1397.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grants PICT 2010-0441 (Agencia Nacional de Promoción Científica y Tecnológica). MLT and CJP belong to Consejo National de Investigaciones Científicas y Técnicas (CONICET).

Author contributions

Both authors conceived and designed the meta-analysis, collected and analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M L Tellechea or C J Pirola.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Journal of Human Hypertension website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tellechea, M., Pirola, C. The impact of hypertension on leukocyte telomere length: a systematic review and meta-analysis of human studies. J Hum Hypertens 31, 99–105 (2017). https://doi.org/10.1038/jhh.2016.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2016.45

This article is cited by

Search

Quick links